1026
GUSEV et al.
7. Iya, S.K., Production of Ultra-High-Purity Polycrystal-
hydrogen because of the rise in the rate of vibrational–
translational energy exchange. This may be responsible
for the reduction in trichlorosilane yield at increased
pressures. Moreover, in the pressure range in question
the gas temperature may rise, leading to partial thermal
decomposition of trichlorosilane.
line Silicon, J. Cryst. Growth, 1986, vol. 75, pp. 88–90.
8. Grankov, I.V. and Ivanov, L.S., Intensification of Poly-
crystalline Silicon Production, Tsvetn. Met., 1986, no. 6,
pp. 60–64.
9. Sarma, K.R. and Rice, M.J., Jr., US Patent 4309259,
1985.
10. Karpov, A.P., Suris, A.L., and Shorin, S.N., Thermody-
namic Analysis of Reduction of Chlorides, II Simpozium
po plazmokhimii (II Symp. on Plasma Synthesis), Riga:
Zinatne, 1975, vol. 2, pp. 178–181.
11. Sarma, K.R. and Chanley, C.S., US Patent 4542004,
1985.
12. Lerage, J.-L and Gerard, S., Fr. Patent 2530638, 1984.
13. Gusev, A.V., Devyatykh, G.G., Sukhkanov, A.Yu., et al.,
RF Patent 2142909, 1998.
CONCLUSIONS
The present results lead us to conclude that the pres-
sure in the reaction zone plays a key role in determining
the trichlorosilane yield of silicon tetrachloride plasma
hydrogenation. The highest trichlorosilane yield (60%)
is achieved at a pressure of 73.1 Pa. The maximum in
the trichlorosilane yield as a function of pressure and
H2 : SiCl4 ratio suggests that the formation of trichlo-
rosilane involves vibrationally excited hydrogen mole-
cules.
14. Krasheninnikov, E.G., Rusanov, V.D., Sanyuk, S.V., and
Fridman, A.A., Hydrogen Sulfide Dissociation in an RF
Discharge, Zh. Tekh. Fiz., 1986, vol. 56, no. 6.
15. Krylov, V.A., Salganskii, Yu.M., and Chernova, O.Yu.,
High-Sensitivity Gas-Chromatographic Determination
of Carbon and Hydrogen-Containing Impurities in Sili-
con Tetrachloride, Zh. Anal. Khim., 2001, vol. 56, no. 9,
pp. 956–961.
16. Sivoshinskaya, T.I., Grankov, I.V., Shabalin, Yu.P., and
Ivanov, L.S., Pererabotka tetrakhlorida kremniya, obra-
zuyushchegosya v proizvodstve poluprovodnikovogo
kremniya (Recycling of Silicon Tetrachloride in Semi-
conductor Silicon Production), Moscow: TsNIItsvetmet
Ekonomiki i Informatsii, 1989.
ACKNOWLEDGMENTS
This work was supported by the Chemistry and
Materials Science Division of the Russian Academy of
Sciences through the Basic Research Program.
REFERENCES
1. Grankov, I.V., Zakharov-Cherenkov, V.K., Ivanov, L.S.,
and Sivoshinskaya, T.I., Proizvodstvo poluprovodniko-
vogo kremniya za rubezhom (Foreign Manufacturing of
Semiconductor Silicon), Moscow: TsNIItsvetmet
Ekonomiki i Informatsii, 1983.
17. Wolf, E. and Teichmann, R., Zur Thermodynamik des
Systems Si–Cl–H, Z. Anorg. Allg. Chem., 1980, vol. 460,
pp. 65–80.
18. Sirtl, E., Hunt, L.P., and Sawyer, D.H., High Tempera-
ture Reactions in the Silicon–Hydrogen–Chlorine Sys-
tem, J. Electrochem. Soc., 1974, vol. 121, no. 7.
19. Huber, K.-P. and Herzberg, G., Molecular Spectra and
Molecular Structure: IV. Constants of Diatomic Mole-
cules, New York: Van Nostrand, 1979.
20. Rusanov, V.D. and Fridman, A.A., Fizika khimicheski
aktivnoi plazmy (Physics of Reactive Plasma), Moscow:
Nauka, 1984.
2. Zhigach, A.F. and Stasinevich, D.S., Khimiya gidridov
(Chemistry of Hydrides), Leningrad: Khimiya, 1969.
3. Taylor, P.A., Purification Techniques and Analytical
Methods for Gaseous and Metallic Impurities in High-
Purity Silane, J. Cryst. Growth, 1988, vol. 89, pp. 28–38.
4. Wilson, J.M., Radley, J.A., and Neale, E.D., UK
Patent 745698, 1956.
5. Radley, J.A. and Elliot, G., UK Patent 838275, 1960.
6. Eugen, M.S. and Schwartz, R., US Patent 4217334. 21. Raizer, Yu.P., Fizika gazovogo razryada (Physics of Gas
1980.
Discharge), Moscow: Nauka, 1987.
INORGANIC MATERIALS Vol. 42 No. 9 2006