X. Nie et al.
(d) A.V. Ushkov, V.V. Grushin, Rational catalysis design on the basis of
Journal of Catalysis 391 (2020) 378–385
mechanistic understanding: highly efficient Pd-catalyzed cyanation of aryl
bromides with NaCN in recyclable solvents, J. Am. Chem. Soc. 133 (2011)
(e) J. Kim, H.J. Kim, S. Chang, Synthesis of aromatic nitriles using nonmetallic
cyano-group sources, Angew. Chem. Int. Ed. 51 (2012) 11948–11959.
(f) J.R. Coombs, K.J. Fraunhoffer, E.M. Simmons, J.M. Stevens, S.R. Wisniewski,
M. Yu, Improving robustness: In situ generation of a Pd(0) catalyst for the
cyanation of aryl bromides, J. Org. Chem. 82 (2017) 7040–7044. https://doi.
(e) T. Achard, J. Egly, M. Sigrist, A.M. FranAois, S.B. Laponnaz, Easy Ruthenium
catalysed oxidation of primary amines to nitriles under oxidant-free
(f) M. Kannan, S. Muthaiah, Extending the chemistry of hexameth-
ylenetetramine in Ruthenium-catalyzed amine oxidation, Organometallics 38
(g) M. Kannan, P. Barteja, P. Devi, S. Muthaiah, Acceptorless dehydrogenation
of amines and alcohols using simple ruthenium chloride, J. Catal. 386 (2020) 1–
(g) K. Kima, S.H. Hong, Photoinduced Copper(I)-catalyzed cyanation of
aromatic halides at room temperature, Adv. Synth. Catal. 359 (2017) 2345–
(h) G.E. Dobereiner, R.H. Crabtree, Dehydrogenation as a substrate-activating
strategy in homogeneous transition-metal catalysis, Chem. Rev. 110 (2010)
[4] (a) F.E. Chen, Y.Y. Kuang, H.F. Dai, L. Lu, M. Huo, Selective and mild oxidation of
primary amines to nitriles with trichloroisocyanuric acid, Synthesis 17 (2003)
(i) M. Kannan, S. Muthaiah, Ruthenium(II)-complex-catalyzed acceptorless
double dehydrogenation of primary amines to nitriles, Synlett (2020), https://
(b) X.Y. Ren, J.B. Chen, F. Chen, J. Cheng, The palladium-catalyzed cyanation of
indole C-H bonds with the combination of NH4HCO3 and DMSO as a safe
[7] (a) X.J. Yu, H.Y. He, L. Yang, H.Y. Fu, X.L. Zheng, H. Chen, R.X. Li, Hemilabile N-
heterocyclic carbene (NHC)-nitrogen-phosphine mediated Ru (II)-catalyzed N-
alkylation of aromatic amine with alcohol efficiently, Catal. Commun. 95
(c) J. Kim, S.S. Stahl, Cu/Nitroxyl-catalyzed aerobic oxidation of primary
amines into nitriles at room temperature, ACS Catal. 3 (2013) 1652–1656.
(d) K.M. Lambert, J.M. Bobbitt, S.A. Eldirany, K.B. Wiberg, W.F. Bailey, Facile
oxidation of primary amines to nitriles using an oxoammonium salt, Org. Lett.
(b) Y.Q. Li, X.J. Yu, Y.D.D. Wang, H.Y. Fu, X.L. Zheng, H. Chen, R.X. Li,
Unsymmetrical pincer N-heterocyclic carbene-nitrogen-phosphine chelated
palladium(II) complexes: Synthesis, structure, and reactivity in direct Csp2ÀH
arylation of benzoxazoles, Organometallics 37 (2018) 979–988. https://doi.
(c) X.C. He, Y.Q. Li, H.Y. Fu, X.L. Zheng, H. Chen, R.X. Li, X.J. Yu, Synthesis of
(e) B. Xu, E.M. Hartigan, G. Feula, Z. Huang, J.P. Lumb, B.A. Arndtsen, Simple
copper catalysts for the aerobic oxidation of amines: selectivity control by the
unsymmetrical
Ruthenium(II)
N-Heterocyclic
complexes and
Carbene-Nitrogen-Phosphine
their reactivity in
Chelated
acceptorless
dehydrogenative coupling of alcohols to esters, Organometallics 38 (2019)
(f) C.J. Fang, M.C. Li, X.Q. Hu, W.M. Mo, B.X. Hu, N. Sun, L.Q. Jin, Z.L. Shen, A
practical iodine-catalyzed oxidative conversion of aldehydes to nitriles, RSC
[5] (a) J.T. Zhang, Z.T. Wang, Y. Wang, C.F. Wan, X.Q. Zheng, Z.Y. Wang, A metal-
free catalytic system for the oxidation of benzylic methylenes and primary
amines under solvent-free conditions, Green Chem. 11 (2009) 1973–1978,
(d) H.M. Liu, L. Jian, C. Li, C.C. Zhang, H.Y. Fu, X.L. Zheng, H. Chen, R.X. Li,
Dehydrogenation of alcohols to carboxylic acid catalyzed by in situ-generated
facial Ruthenium-CPP complex, J. Org. Chem. 84 (2019) 9151–9160.
(e) Y.L. Zheng, X.F. Nie, Y. Long, L. Ji, H.Y. Fu, X.L. Zheng, H. Chen, R.X. Li,
Ruthenium-catalyzed synthesis of N-substituted lactams by acceptorless
dehydrogenative coupling of diols with primary amines, Chem. Commun. 55
(b) P.D.W. Boyd, M.G. Glenny, C.E.F. Rickard, A.J. Nielson, Stoichiometric aryl
nitrile formation from amides and aroyl isocyanates using high-valent early
transition metal complexes and a catalytic process from the aroyl isocyanates,
(c) K. Yamaguchi, K. Yajimaa, N. Mizuno, Facile synthesis of nitriles via
manganese oxide promoted oxidative dehydrosulfurization of primary
[8] (a) M.E. Broussard, B. Juma, S.G. Train, W.J. Peng, S.A. Laneman, G.G. Stanley, A
bimetallic hydroformylation catalyst: high regioselectivity and reactivity
through homobimetallic cooperativity, Science 260 (1993) 1784–1788,
(b) R.C. Matthews, D.K. Howell, W.J. Peng, S.G. Train, W.D. Treleaven, G.G.
Stanley, Bimetallic hydroformylation catalysis: in situ characterization of a
dinuclear Rhodium(II) dihydrido complex with the largest Rh-H NMR coupling
(c) D.A. Aubry, N.N. Bridges, K. Ezell, G.G. Stanley, Polar Phase
Hydroformylation: The dramatic effect of water on mono- and dirhodium
(e) D.E. Herbert, O.V. Ozerov, Binuclear palladium complexes supported by
bridged pincer ligands, Organometallics 30 (2011) 6641–6654. https://doi.
(d) Z. Wang, S.G. Chang, Copper-mediated transformation of organosilanes to
nitriles with DMF and ammonium iodide, Org. Lett. 15 (2013) 1990–1993.
(e) C.A. Malapit, J.T. Reeves, C.A. Busacca, A.R. Howell, C.H. Senanayake,
Rhodium-catalyzed
transnitrilation
of
aryl
boronic
acids
with
dimethylmalononitrile, Angew. Chem. Int. Ed. 55 (2016) 326–330.
(f) S. Gaspa, A. Porcheddu, A. Valentoni, S. Garroni, S. Enzo, L.D. Luca, A
mechanochemical-assisted oxidation of amines to carbonyl compounds and
(g) Y. Huang, X.D. Chong, C.B. Liu, Y. Liang, B. Zhang, Boosting hydrogen
production by anodic oxidation of primary amines over
a NiSe nanorod
(h) S.A. Shipilovskikh, O.Y. Vaganov, E.I. Denisova, A.E. Rubtsov, O.V. Malkov,
(f) M.G. Timerbulatova, M.R.D. Gatus, K.Q. Vuong, M. Bhadbhade, A.G. Algarra,
S.A. Macgregor, B.A. Messerle, Bimetallic complexes for enhancing catalyst
efficiency: Probing the relationship between activity and intermetallic
(g) B.J. Anderson, S.C. Reynolds, M.A. Guinoo, Z.M. Xu, D.S. Glueck, Effect of
linker length on selectivity and Cooperative reactivity in platinum-catalyzed
asymmetric alkylation of bis(phenylphosphino) alkanes, ACS Catal. 6 (2016)
Dehydration of amides to nitriles under conditions of
a catalytic appel
(i) B.K. Vaghasiyaa, S.P. Satasiaa, R.P. Thummara, R.D. Kamania, J.R. Avalanib,
N.H. Sapariyac, D.K. Ravala, Oxidative cyanide-free cyanation on arylboronic
acid derivatives using aryl/heteroaryl thiocyanate using novel IL-PdCl4
catalyst under mild condition, J. Sulfur Chem. 39 (2018) 507–515.
(j) H. Meng, S. Gao, M.M. Luo, X.M. Zeng, Iron and phenol co-catalysis for rapid
synthesis of nitriles under mild conditions, Eur. J. Org. Chem. 28 (2019) 4617–
[9] (a) D.C. Powers, M.A.L. Geibel, J.E.M.N. Klein, T. Ritter, Bimetallic Palladium
catalysis: direct observation of Pd(III)-Pd(III) intermediates, J. Am. Chem. Soc.
(b) N.P. Mankad, Selectivity effects in bimetallic catalysis, Chem. Eur. J. 22
[10] A.F. Trindade, J.A.S. Coelho, C.A.M. Afonso, L.F. Veiros, P.M.P. Gois, Fine tuning
of dirhodium(II) complexes: exploring the axial modification, ACS Catal. 2
[6] (a) K.N.T. Tseng, A.M. Rizzi, N.K. Szymczak, Oxidant-free conversion of primary
(b) K.N.T. Tseng, N.K. Szymczak, Dehydrogenative oxidation of primary amines
[11] (a) A. Zanardi, J.A. Mata, E. Peris, Well-defined Ir/Pd complexes
with a triazolyl-diylidene bridge as catalysts for multiple tandem reactions,
(c) D.V. Espinosa, A.M. Beltrln, J.A. Mata, Catalytic hydrogen production by
Ruthenium complexes from the conversion of primary amines to nitriles:
Potential application as a liquid organic hydrogen carrier, Chem. Eur. J. 22
(b) A. Zanardi, J.A. Mata, E. Peris, One-pot preparation of imines from
nitroarenes by a tandem process with an Ir-Pd heterodimetallic catalyst,
Chem.
–
Eur. J. 16 (2010) 10502–10506.
(d) I. Dutta, S. Yadav, A. Sarbajna, S. De, M. Hölscher, W. Leitner, J.K. Bera,
Double dehydrogenation of primary amines to nitriles by
complex featuring pyrazole functionality, J. Am. Chem. Soc. 140 (2018)
a
Ruthenium
(c) Y. Shi, S.A. Blum, Gold and Rhodium transmetalation: mechanistic insights
and dual-metal reactivity, Organometallics 30 (2011) 1776–1779. https://doi.
384