10.1002/adsc.201700751
Advanced Synthesis & Catalysis
[3] For selected reviews, see: a) T. Morimoto, K. Kakiuchi,
Angew. Chem. Int. Ed. 2004, 43, 5580–5588; b) L. R.
Odell, F. Russo, M. Larhed, Synlett 2012, 685–698; c)
L. Wu, Q. Liu, R. Jackstell, M. Beller, Angew. Chem.
Int. Ed. 2014, 53, 6310–6320; d) H. Konishi, K.
Manabe, Synlett 2014, 25, 1971–1986; e) P. Gautam, B.
M. Bhanage, Catal. Sci. Technol. 2015, 5, 4663–4702;
f) S. D. Friis, A. T. Lindhardt, T. Skrydstrup, Acc.
Chem. Res. 2016, 49, 594–605.
Beller, A. F. Indolese, J. Mol. Catal. A: Chem. 2000,
156, 213–221.
[6] a) T. Ueda, H. Konishi, K. Manabe, Org. Lett. 2012, 14,
3100–3103; b) T. Ueda, H. Konishi, K. Manabe,
Tetrahedron Lett. 2012, 53, 5171–5175; c) H. Konishi,
H. Nagase, K. Manabe, Chem. Commun. 2015, 51,
1854–1857.
[7] T. Fujihara, T. Hosoki, Y. Katafuchi, T. Iwai, J. Terao,
Y. Tsuji, Chem. Commun. 2012, 48, 8012–8014.
[4] a) J. S. Morgan, J. Chem. Soc. Trans. 1916, 109, 274–
283; b) T. Okano, T. Kobayashi, H. Konishi, J. Kiji,
Tetrahedron Lett. 1982, 23, 4967–4968; c) P. Isnard, B.
Denise, R. P. A. Sneeden, J. Organomet. Chem. 1983,
256, 135–139; d) J.-F. Carpentier, Y. Castanet, J.
Brocard, A. Mortreux, F. Petit, Tetrahedron Lett. 1991,
32, 4705–4708; e) G. Jenner, E. M. Nahmed, H.
Leismann, J. Organomet. Chem. 1990, 387, 315–321; f)
V. V. Grushin, H. Alper, Organometallics 1993, 12,
3846–3850; g) C. M. Beck, S. E. Rathmill, Y. J. Park, J.
Chen, R. H. Crabtree, L. M. Liable-Sands, A. L.
Rheingold, Organometallics 1999, 18, 5311–5317; h) N.
F. K. Kaiser, A. Hallberg, M. Larhed, J. Comb. Chem.
2002, 4, 109–111; i) Y. Wan, M. Alterman, M. Larhed,
A. Hallberg, J. Org. Chem. 2002, 67, 6232–6235; j) S.
Ko, C. Lee, M.-G. Choi, Y. Na, S. Chang, J. Org. Chem.
2003, 68, 1607–1610; k) S. Cacchi, G. Fabrizi, A.
Goggiamani, Org. Lett. 2003, 5, 4269–4272; l) K. Fuji,
T. Morimoto, K. Tsutsumi, K. Kakiuchi, Angew. Chem.
Int. Ed. 2003, 42, 2409–2411; m) Y. Katafuchi, T.
Fujihara, T. Iwai, J. Terao, Y. Tsuji, Adv. Synth. Catal.
2011, 353, 475–482; n) P. Hermange, A. T. Lindhardt,
R. H. Taaning, K. Bjerglund, D. Lupp, T. Skrydstrup, J.
Am. Chem. Soc. 2011, 133, 6061–6071; o) S. D. Friis, R.
H. Taaning, A. T. Lindhardt, T. Skrydstrup, J. Am.
Chem. Soc. 2011, 133, 18114–18117; p) T. Ueda, H.
Konishi, K. Manabe, Angew. Chem. Int. Ed. 2013, 52,
8611–8615; q) T. Ueda, H. Konishi, K. Manabe, Org.
Lett. 2013, 15, 5370–5373; r) D.-S. Kim, W.-J. Park,
C.-H. Lee, C.-H. Jun, J. Org. Chem. 2014, 79, 12191–
12196; s) W. Li, X.-F. Wu, J. Org. Chem. 2014, 79,
10410–10416; t) K. Natte, A. Dumrath, H. Neumann,
M. Beller, Angew. Chem. Int. Ed. 2014, 53, 10090–
10094; u) M. Babjak, O. Caletková, D. Ďurišová, T.
Gracza, Synlett 2014, 25, 2579–2584; v) S. V. F.
Hansen, T. Ulven, Org. Lett. 2015, 17, 2832–2835; w)
A. Barré, M.-L. Ţînţaş, F. Alix, V. Gembus, C.
Papamicaël, V. Levacher, J. Org. Chem. 2015, 80,
6537–6544; x) H. Konishi, T. Muto, T. Ueda, Y.
Yamada, M. Yamaguchi, K. Manabe, ChemCatChem
2015, 7, 836–845; y) S. K. Murphy, J.-W. Park, F. A.
Cruz, V. M. Dong, Science 2015, 347, 56–60; z) C.
Veryser, S. Van Mileghem, B. Egle, P. Gilles, W. M.
De Borggraeve, React. Chem. Eng. 2016, 1, 142–146;
aa) X. Qi, C.-L. Li, L.-B. Jiang, W.-Q. Zhang, X.-F. Wu,
Catal. Sci. Technol. 2016, 6, 3099–3107.
[8] A. Schoenberg, I. Bartoletti, R. F. Heck, J. Org. Chem.
1974, 39, 3318–3326.
[9] a) T. Ueda, H. Konishi, K. Manabe, Org. Lett. 2012, 14,
5370–5373; b) H. Konishi, T. Ueda, K. Manabe, Org.
Synth. 2014, 91, 39–51.
[10] For selected examples of the use of aryl formates as
CO surrogates, see: a) H. Wang, B. Dong, Y. Wang, J.
Li, Y. Shi, Org. Lett. 2014, 16, 186–189; b) Y.
Hoshimoto, T. Ohata, Y. Sasaoka, M. Ohashi, S.
Ogoshi, J. Am. Chem. Soc. 2014, 136, 15877–15880; c)
S. P. Chavan, B. M. Bhanage, Eur. J. Org. Chem. 2015,
2405–2410; d) Y. Zhang, J.-L. Chen, Z.-B. Chen, Y.-M.
Zhu, S.-J. Ji, J. Org. Chem. 2015, 80, 10643–10650; e)
Q. Yuan, Z.-B. Chen, F.-L. Zhang, Y.-M. Zhu, Org.
Biomol. Chem. 2017, 15, 1628–1635. For the use of
phenyl formate in total synthesis, see: f) W.-Y. Zhang,
Q. Che, S. Crawford, M. Ronn, N. Dunwoody, J. Org.
Chem. 2017, 82, 936–943. For the use of 2,4,6-
trichlorophenyl formate in flow synthesis, see: g) J. L.
Vrijdag, F. Delgado, N. Alonso, W. M. De Borggraeve,
N. Pérez-Macias, J. Alcázar, Chem. Commun. 2014, 50,
15094–15097.
[11] Alkyl formates are known to undergo base-catalyzed
decomposition to CO and alcohols. For example, see: a)
T. Ushikubo, H. Hattori, K. Tanabe, Chem. Lett. 1984,
649–652; b) F. Q. Ma, D. S. Lu, Z. Y. Guo, J. Mol.
Catal. 1993, 78, 309–325.
[12] A theoretical study for the thermal decomposition of
methyl formate without a base has been reported; a) J. S.
Francisco, J. Am. Chem. Soc. 2003, 125, 10475–10480.
The gas-phase reaction of methyl formate with anions,
known as Riveros reaction, has been studied; b) P. C.
Isolani, J. M. Riveros, Chem. Phys. Lett. 1975, 33, 362–
364; c) W. L. Jorgensen, J. F. Blake, J. D. Madura, S. D.
Wierschke, Computational Investigations of Organic
Reaction Mechanisms. ACS Symp. Ser. 1987, 353, 200–
217.
[13] The reaction rates of 1a in benzene and THF at 70 C
have been reported. See ref. [10b]
.
[14] N. S. Isaacs, Physical Organic Chemistry, Longman
Scientific & Technical, Essex, 1987.
[15] Molecular calculations were performed using
Gaussian 09. M. J. Frisch, G. W. Trucks, H. B. Schlegel,
G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G.
Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H.
Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F.
Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M.
[5] In carbonylation using CO, several studies have
indicated that low CO pressure affords good results; a)
F. Ozawa, H. Soyama, H. Yanagihara, I. Aoyama, H.
Takino, K. Izawa, T. Yamamoto, A. Yamamoto, J. Am.
Chem. Soc. 1985, 107, 3235–3245; b) W. Mägerlein, M.
8
This article is protected by copyright. All rights reserved.