852
and Bishop (1979) and Uzochukwu, Balogh, Loefler, and Ngoddy
(2002). The relatively broad signal at ∼ı 100 ppm corresponds to
the anomeric (C-1) carbons of [A], [C] and [E] residues (Table 2),
i.e. linked to the C-4 of the next residue along the chain (main
backbone or side chain) forming a (1 → 4)-linkage between the ␣-
linked to the C-6 of the next residue, forming the (1→6)-linkage
between the ␣-d-Glcp residues (the branch point linkage). The sig-
(Table 2), i.e. linked to the C-1 of the preceding residue along the
chain (an internal link in the main backbone or side chain) form-
ing a (1 → 4)-linkage between the ␣-d-Glcp residues. The relatively
collection of poorly resolved peaks in the ∼ı 70–75 ppm region are
[B], and the C-6 carbons in residue [E] (Table 2).
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of
microgram quantities of protein utilizing the principle of protein–dye binding.
Analytical Biochemistry, 72, 248–254.
Dixon, J. S., & Lipkin, D. (1954). Spectrophotometric determination of vicinal glycols.
Application to the determination of ribofuranosides. Analytical Chemistry, 26,
1092–1093.
Dok-Go, H., Lee, K. H., Kim, H. J., Lee, E. H., Lee, J., Song, Y. S., et al. (2003). Neuropro-
tective effects of antioxidative flavonoids, quercetin, (+)-dihydroquercetin and
quercetin 3-methyl ether, isolated from Opuntia ficus-indica var. saboten. Brain
Research, 965, 130–136.
Dominguez-Lopez, A. (1995). Use of the fruits and stems of the prickly pear cactus
(Opuntia spp.) into human food. Food Science and Technology International, 1,
65–69.
DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric
method for determination of sugars and related substances. Analytical Chemistry,
28, 350–356.
El Kossori, R. L., Villaume, C., El Boustani, E., Sauvaire, Y., & Mejean, L. (1998). Com-
position of pulp, skin and seeds of prickly pear fruits (Opuntia ficus indica sp.).
Plant Foods for Human Nutrition, 52, 263–270.
Filisetti-Cozzi, T. M. C. C., & Carpita, N. C. (1991). Measurement of uronic acids
without interference from neutral sugars. Analytical Biochemistry, 197, 157–
162.
Forni, E., Penci, M., & Polessello, A. (1994). A preliminary characterization of some
pectins from quince (Cydonia oblonga Mill.) and prickly pear (Opuntia ficus indica)
peel. Carbohydrate Polymers, 23, 231–234.
It should be noted that no assignment of signals in both 1H
and 13C NMR spectra have been discussed for the non-reducing
ends (residue [F] in Table 2), since these are rarely observed due
to their very low concentration with respect to other residue
signals.
Galati, E. M., Monforte, M. T., Tripodo, M. M., d’Aquino, A., & Mondello, M. R. (2001).
Antiulcer activity of Opuntia ficus indica (L.) Mill. (Cactaceae): Ultrastructural
study. Journal of Ethnopharmacology, 76, 1–9.
Galati, E. M., Mondello, M. R., Giuffrida, D., Dugo, G., Miceli, N., Pergolizzi, S., et al.
(2003). Chemical characterization and biological effects of Sicilian Opuntia ficus
indica (L.) Mill. fruit juice: Antioxidant and antiulcerogenic activity. Journal of
Agricultural and Food Chemistry, 51, 4903–4908.
Galati, E. M., Mondello, M. R., Lauriano, E. R., Taviano, M. F., Galluzzo, M., & Miceli,
N. (2005). Opuntia ficus indica (L.) Mill. fruit juice protects liver from carbon
tetrachloride-induced injury. Phytotherapy Research, 19, 796–800.
Gentile, C., Tesoriere, L., Allegra, M., Livrea, M. A., & D’Alessio, P. (2004). Antioxi-
dant betalains from cactus pear (Opuntia ficus-indica) inhibit endothelial ICAM-1
expression. Annals of the New York Academy of Sciences, 1028, 481–486.
Gurbachan, S., & Felker, P. (1998). Cactus: New world foods. Indian Horticulture, 43,
29–31.
Habibi, Y., Heyraud, A., Mahrouz, M., & Vignon, M. R. (2004). Structural features of
pectic polysaccharides from the skin of Opuntia ficus-indica prickly pear fruits.
Carbohydrate Research, 339, 1119–1127.
Habibi, Y., Mahrouz, M., Marais, M.-F., & Vignon, M. R. (2004). An arabinogalactan
from the skin of Opuntia ficus-indica prickly pear fruits. Carbohydrate Research,
339, 1201–1205.
Hakomori, S.-I. (1964). A rapid permethylation of glycolipid and polysaccharide
catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. Journal of Biochem-
istry, 55, 205–208.
Hfaiedh, N., Allagui, M. S., Hfaiedh, M., El Feki, A., Zourgui, L., & Croute, F. (2008).
Protective effect of cactus (Opuntia ficus indica) cladode extract upon nickel-
induced toxicity in rats. Food and Chemical Toxicology, 46, 3759–3763.
Ishurd, O., Sun, C., Xiao, P., Ashour, A., & Pan, Y. (2002). A neutral -d-glucan
from dates of the date palm, Phoenix dactylifera L. Carbohydrate Research, 337,
1325–1328.
Kuti, J. O. (2004). Antioxidant compounds from four Opuntia cactus pear fruit vari-
eties. Food Chemistry, 85, 527–533.
Li, S. P., Zhao, K. J., Ji, Z. N., Song, Z. H., Dong, T. T. X., Lo, C. K., et al. (2003). A
polysaccharide isolated from Cordyceps sinensis, a traditional Chinese medicine,
protects PC12 cells against hydrogen peroxide-induced injury. Life Sciences, 73,
2503–2513.
4. Conclusions
Opuntia ficus indica (L.) Miller is a lightly branched ␣-d-glucan, with
a weight average molecular weight (Mw) in the region of ∼360 kDa.
The potential structural features of PS-1 polysaccharide are pre-
sented in Fig. 3. PS-1 is composed of a (1 → 4)-linked ␣-d-Glcp
backbone, with (1 → 6)-linked ␣-d-Glcp side chains. Linkage anal-
ysis suggests a minimum branching of ∼1 in every 9–11 backbone
units (∼1 in 9 from periodate oxidation/Smith degradation (ratio
∼1:8), and ∼1 in 11 from methylation analysis (ratio ∼1:10) results,
and ∼1 in 10 from 1H NMR analysis). This is if y = 0 (Fig. 3), i.e.
side chains are composed of only terminal non-redusing ␣-d-Glcp
units linked to the backbone via (1 → 6)-linkages. Periodate oxida-
tion/Smith degradation of partial hydrolysates of PS-1 suggests that
any side chains must be relatively acid labile (i.e. short in length,
withnoadditional branching). Thedistributionofside chainlengths
(and corresponding branching density) requires confirmation (by
analysis of hydrolysates prepared using a debranching enzyme,
such as pullulanase or isoamylase).
Majdoub, H., Roudesli, S., Picton, L., Le Cerf, D., Muller, G., & Grisel, M. (2001). Prickly
pear nopals pectin from Opuntia ficus-indica: Physico-chemical study in dilute
and semi-dilute solutions. Carbohydrate Polymers, 46, 69–79.
Matsuhiro, B., Lillo, L. E., Sáenz, C., Urzúa, C. C., & Zárate, O. (2006). Chemical char-
acterization of the mucilage from fruits of Opuntia ficus indica. Carbohydrate
Polymers, 63, 263–267.
Acknowledgement
The authors would like to thank the Chemistry Department,
Zhejiang University, China for access to NMR spectroscopy facilities.
McGarvie, D., & Parolis, H. (1981a). Methylation analysis of the mucilage of Opuntia
ficus-indica. Carbohydrate Research, 88, 305–314.
McGarvie, D., & Parolis, H. (1981b). The acid-labile, peripheral chains of the mucilage
of Opuntia ficus-indica. Carbohydrate Research, 94, 57–65.
Meyer, B. N., & McLaughlin, J. L. (1981). Economic use of Opuntia. Cactus and Succulent
Journal, 53, 107–112.
Ncibi, S., Othman, M. B., Akacha, A., Krifi, M. N., & Zourgui, L. (2008). Opuntia ficus
indica extract protects against chlorpyrifos-induced damage on mice liver. Food
and Chemical Toxicology, 46, 797–802.
Panico, A. M., Cardile, V., Garufi, F., Puglia, C., Bonina, F., & Ronsisvalle, S. (2007). Effect
of hyaluronic acid and polysaccharides from Opuntia ficus indica (L.) cladodes on
the metabolism of human chondrocyte cultures. Journal of Ethnopharmacology,
111, 315–321.
Papp-Szabó, E., Kanipes, M. I., Guerry, P., & Monteiro, M. A. (2005). Cell surface ␣-
glucan in Campylobacter jejuni 81–176. Carbohydrate Research, 340, 2218–2221.
Park, F. S. (1971). Application of IR spectroscopy in biochemistry, biology, and medicine.
New York: Plenum Press.
References
Agozzino, P., Avellone, G., Caraulo, L., Ferrugia, M., & Filizzola, F. (2005). Volatile
profile of Sicilian prickly pear (Opuntia ficus-indica) by SPME–GC/MS analysis.
Italian Journal of Food Science, 17, 341–348.
Alam, N., & Gupta, P. C. (1986). Structure of a water-soluble polysaccharide from the
seeds of Cassia angustifolia. Planta Medica, 52, 308–310.
Amin, E. S., Awad, O. M., & El-Sayed, M. M. (1970). The mucilage of Opuntia ficus-indica
Mill. Carbohydrate Research, 15, 159–161.
Bao, X., Duan, J., Fang, X., & Fang, J. (2001). Chemical modifications of the (1 → 3)-
␣-d-glucan from spores of Ganoderma lucidum and investigation of their
physicochemical properties and immunological activity. Carbohydrate Research,
336, 127–140.
Barker, S. A., Bourne, E. J., Stacey, M., & Whiffen, D. H. (1954). Infrared spectra of car-
bohydrates. Part I. Some derivatives of d-glucopyranose. Journal of the Chemical
Society, 171–176.
Björndal, H., Lindberg, B., & Svensson, S. (1967). Mass spectrometry of partially
methylated alditol acetates. Carbohydrate Research, 5, 433–440.
Park, E.-H., & Chun, M.-J. (2001). Wound healing activity of Opuntia ficus-indica.
Fitoterapia, 72, 165–167.