Journal of the American Chemical Society
Communication
The reactions of racemic δ-alkyl-δ-hydroxy esters rac-2b−i
were also evaluated with catalyst (R)-1 (Table 1, entries 2−9).
The size of the δ-alkyl group of rac-2 had little effect on the
enantioselectivity of the reaction; the ee values of chiral 1,5-
diols 3b−i were 91−97% with s values ranging from 94 to 194.
However, a bulky δ-alkyl group lowered the reaction rate (the
required reaction time increased from 1 to 6 h). The ee values
of the recovered (R)- or (S)-2 were 90−99%, and higher
conversion generally led to higher ee values of the recovered
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This project was supported by the National Natural Science
Foundation of China, the National Basic Research Program of
China (973 Program) (2012CB821600), and the “111” Project
of the Ministry of Education of China (B06005).
(
R)- or (S)-2. This method was also efficient for the kinetic
resolution of racemic δ-aryl-δ-hydroxy esters. For example,
REFERENCES
■
hydrogenation of racemic ethyl 5-phenyl-5-hydroxypentanoate
(
1) (a) Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40.
b) Reetz, M. T.; Li, X. J. Am. Chem. Soc. 2006, 128, 1044. (c) Li, J.;
Tang, Y.; Wang, Q.; Li, X.; Cun, L.; Zhang, X.; Zhu, J.; Li, L.; Deng, J.
J. Am. Chem. Soc. 2012, 134, 18522.
(
rac-2j) for 0.5 h provided diol (S)-3j in 47% yield with 95% ee
and recovered (R)-2j in 49% yield with 94% ee (s = 139; entry
0). It should be noted, however, that hydrogenation of a
(
1
racemic γ-alkyl-γ-hydroxy ester gave a low yield (22%) and low
ee value (<10% ee), and hydrogenation of racemic ε-alkyl-ε-
hydroxy esters did not proceed.
(2) (a) de Vries, J. G.; Elsevier, C. J. The Handbook of Homogeneous
Hydrogenation; Wiley-VCH: Weinheim, Germany, 2007. (b) Zhao, B.;
Han, Z.; Ding, K. Angew. Chem., Int. Ed. 2013, 52, 4744. (c) Xie, J.-H.;
Zhou, Q.-L. Acta Chim. Sin. 2012, 70, 1427.
1
Because δ-methyl-δ-valerolactone was detected by H NMR
(
3) (a) Jiang, Q.; Jiang, Y.; Xiao, D.; Cao, P.; Zhang, X. Angew. Chem.,
Int. Ed. 1998, 37, 1100. (b) Ohkuma, T.; Sandoval, C. A.; Srinivasan,
R.; Lin, Q.; Wei, Y.; Muniz, K.; Noyori, R. J. Am. Chem. Soc. 2005, 127,
288. (c) Yamamura, T.; Nakatsuka, H.; Tanaka, S.; Kitamura, M.
Angew. Chem., Int. Ed. 2013, 52, 9313.
4) (a) Vedejs, E.; Jure, M. Angew. Chem., Int. Ed. 2005, 44, 3974.
(b) Denmark, S. E.; Beutner, G. L. Angew. Chem., Int. Ed. 2008, 47,
1560. (c) Muller, C. E.; Schreiner, P. R. Angew. Chem., Int. Ed. 2011,
50, 6012. (d) Pellissier, H. Adv. Synth. Catal. 2011, 353, 1613.
5) For selected papers, see: (a) Vedejs, E.; Chen, X. J. Am. Chem.
spectroscopy as a byproduct (≤2% yield) of the hydrogenation
of rac-2a, we speculated that the kinetic resolution proceeds via
hydrogenation of a lactone intermediate. To investigate this
possibility, we carried out the hydrogenation of racemic δ-
methyl-δ-valerolactone (rac-4) catalyzed by (R)-1 and obtained
diol (R)-3a in 48% yield with 90% ee; (S)-2a was recovered in
̃
8
(
4
1% yield with 99.4% ee (Scheme 3). These yields and ee
̈
values are comparable to those obtained from the hydro-
genation of rac-2a, which suggests that EHKR of rac-2a
occurred via lactone hydrogenation and also explains why the
position of the ester group in the substrate was extremely
important for achieving efficient EHKR.
(
Soc. 1996, 118, 1809. (b) Ruble, J. C.; Latham, H. A.; Fu, G. C. J. Am.
Chem. Soc. 1997, 119, 1492. (c) Tao, B.; Ruble, J. C.; Hoic, D. A.; Fu,
G. C. J. Am. Chem. Soc. 1999, 121, 5091. (d) Jarvo, E. R.; Copeland, G.
T.; Papaioannou, N.; Bonitatebus, P. J., Jr.; Miller, S. J. J. Am. Chem.
Soc. 1999, 121, 11638. (e) Vasbinder, M. M.; Jarvo, E. R.; Miller, S. J.
Angew. Chem., Int. Ed. 2001, 40, 2824. (f) Mizuta, S.; Sadamori, M.;
Fujimoto, T.; Yamamoto, I. Angew. Chem., Int. Ed. 2003, 42, 3383.
(g) Birman, V. B.; Uffman, E. W.; Jiang, H.; Li, X.; Kilbane, C. J. J. Am.
Chem. Soc. 2004, 126, 12226. (h) Matsumura, Y.; Maki, T.; Murakami,
S.; Onomura, O. J. Am. Chem. Soc. 2003, 125, 2052. (i) Spivey, A. C.;
Leese, D. P.; Zhu, F.; Davey, S. G.; Jarvest, R. L. Tetrahedron 2004, 60,
To demonstrate the utility of the method, we synthesized the
natural product (+)-civet and the chiral drug (R)-lisofylline
using EHKR as a key step (Scheme 4). (+)-Civet is an
expensive perfume material isolated from the perianal gland
18
secretions of the African civet, and its synthesis has been
19
extensively studied over the past decades. Starting from (S)-
a (R = Me), we synthesized (+)-civet in 51% overall yield in
2
4
(
1
513. (j) Gissibl, A.; Finn, M. G.; Reiser, O. Org. Lett. 2005, 7, 2325.
k) Mazet, C.; Roseblade, S.; Kohler, V.; Pfaltz, A. Org. Lett. 2006, 8,
879. (l) Hu, B.; Meng, M.; Wang, Z.; Du, W.-T.; Fossey, J. S.; Hu, X.-
five steps, including an intramolecular oxa-Michael addition to
generate the tetrahydropyran ring. The chiral drug (R)-
lisofylline, an anti-inflammatory agent and a potent reagent
̈
Q.; Deng, W.-P. J. Am. Chem. Soc. 2010, 132, 17041.
6) For selected papers, see: (a) Hashiguchi, S.; Fujii, A.; Haack, K.-
J.; Matsumura, K.; Ikariya, T.; Noyori, R. Angew. Chem., Int. Ed. Engl.
997, 36, 288. (b) Ferreira, E. M.; Stoltz, B. M. J. Am. Chem. Soc. 2001,
9
for the treatment of type 1 diabetes, was synthesized
(
conveniently from 1,5-diol (R)-3a (R = Me) in four steps in
4
9% overall yield.
In conclusion, we have developed a highly efficient and
1
123, 7725. (c) Jensen, D. R.; Pugsley, J. S.; Sigman, M. S. J. Am. Chem.
Soc. 2001, 123, 7475. (d) Sun, W.; Wang, H.; Xia, C. G.; Li, J.; Zhao,
P. Angew. Chem., Int. Ed. 2003, 42, 1042. (e) Bagdanoff, J. T.; Ferreira,
E. M.; Stoltz, B. M. Org. Lett. 2003, 5, 835. (f) Mandal, S. K.; Sigman,
M. S. J. Org. Chem. 2003, 68, 7535. (g) Wills, M. Angew. Chem., Int. Ed.
practical method for kinetic resolution of racemic aliphatic
alcohols via catalytic hydrogenation of hydroxyl esters. The
EHKR method is a novel approach for the preparation of
optically active δ-alkyl-δ-hydroxy esters and δ-alkyl-1,5-diols in
high yields with high enantioselectivities. By using EHKR, we
achieved the asymmetric syntheses of bioactive natural products
and chiral drugs (+)-civet and (R)-lisofylline.
2
008, 47, 4264. (h) Arita, S.; Koike, T.; Kayaki, Y.; Ikariya, T. Angew.
Chem., Int. Ed. 2008, 47, 2447.
7) (a) Liu, C.; Xie, J.-H.; Li, Y.-L.; Chen, J.-Q.; Zhou, Q.-L. Angew.
(
Chem., Int. Ed. 2013, 52, 593. (b) Yang, X.-H.; Xie, J.-H.; Liu, W.-P.;
Zhou, Q.-L. Angew. Chem., Int. Ed. 2013, 52, 7833.
(8) Kitamura, M.; Kasahara, I.; Manabe, K.; Noyori, R. J. Org. Chem.
1988, 53, 708.
(9) Cui, P.; Macdonald, T. L.; Chen, M.; Nadler, J. L. Bioorg. Med.
Chem. Lett. 2006, 16, 3401.
ASSOCIATED CONTENT
Supporting Information
■
*
S
Experimental procedures and characterization data. This
(10) Nagasawa, T.; Kuwahara, S. Org. Lett. 2009, 11, 761.
(11) Pfeiffer, B.; Speck-Gisler, S.; Barandun, L.; Senft, U.; Groot, C.;
Lehmann, I.; Ganci, W.; Gertsch, J.; Altmann, K.-H. J. Org. Chem.
013, 78, 2553.
12) Tietze, L. F.; Brasche, G.; Stadler, C.; Grube, A.; Bo
Angew. Chem., Int. Ed. 2006, 45, 5015.
AUTHOR INFORMATION
2
(
̈
hnke, N.
(13) MacMillan, J. B.; Molinski, T. F. Org. Lett. 2002, 4, 1535.
C
dx.doi.org/10.1021/ja510990v | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX