Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
Inorganic Chemistry
Communication
Organic Frameworks. Chem. Rev. 2012, 112, 782−835. (c) Qiu, S. L.;
Xue, M.; Zhu, G. S. Metal-organic framework membranes: from
synthesis to separation. Chem. Soc. Rev. 2014, 43, 6116−6140. (d) Li, J.
R.; Sculley, J.; Zhou, H. C. Metal-Organic Frameworks for Separations.
Chem. Rev. 2012, 112, 869−932.
(2) (a) Chughtai, A. H.; Ahmad, N.; Younus, H. A.; Laypkov, A.;
Verpoort, F. Metal-organic frameworks: versatile heterogeneous
catalysts for efficient catalytic organic transformations. Chem. Soc. Rev.
2015, 44, 6804−6849. (b) Sun, L. B.; Liu, X. Q.; Zhou, H. C. Design and
fabrication of mesoporous heterogeneous basic catalysts. Chem. Soc. Rev.
(10) (a) Meggers, E. Asymmetric Synthesis of Octahedral Coordina-
tion Complexes. Eur. J. Inorg. Chem. 2011, 2011, 2911−2926.
(b) Kamikawa, K. Asymmetric Synthesis of Axially Chiral Compound
Utilizing Planar Chiral Transition Metal Complexes and Their
Development for Dynamic Complexes. Yuki Gosei Kagaku Kyokaishi
2008, 66, 953−964. (c) Arae, S.; Ogasawara, M. Catalytic Asymmetric
Synthesis of Planar-Chiral Transition-Metal Complexes. Yuki Gosei
Kagaku Kyokaishi 2012, 70, 593−605.
(11) (a) Perez-Garcıa, L.; Amabilino, D. B. Spontaneous resolution,
whence and whither: from enantiomorphic solids to chiral liquid
crystals, monolayers and macro- and supra-molecular polymers and
assemblies. Chem. Soc. Rev. 2007, 36, 941−967. (b) Zhang, J.; Chen, S.
M.; Wu, T.; Feng, P. Y.; Bu, X. H. Homochiral Crystallization of
Microporous Framework Materials from Achiral Precursors by Chiral
Catalysis. J. Am. Chem. Soc. 2008, 130, 12882−12883. (c) Zhang, J.;
Chen, S. M.; Nieto, R. A.; Wu, T.; Feng, P. Y.; Bu, X. H. A Tale of Three
Carboxylates: Cooperative Asymmetric Crystallization of Three-
Dimensional Microporous Framework from Achiral Precursors.
Angew. Chem., Int. Ed. 2010, 49, 1267−1270. (d) Weissbuch, I.;
Lahav, M. Crystalline Architectures as Templates of Relevance to the
Origins of Homochirality. Chem. Rev. 2011, 111, 3236−3267.
(12) (a) Lan, Y. Q.; Li, S. L.; Su, Z. M.; Shao, K. Z.; Ma, J. F.; Wang, X.
L.; Wang, E. B. Spontaneous resolution of a 3D chiral polyoxometalate-
based polythreaded framework consisting of an achiral ligand. Chem.
Commun. 2008, 58−60. (b) Yan, B. B.; Capracotta, M. D.; Maggard, P.
A. Structural Origin of Chirality and Properties of a Remarkable
Helically Pillared Solid. Inorg. Chem. 2005, 44, 6509−6511. (c) Tong, X.
L.; Hu, T. L.; Zhao, J. P.; Wang, Y. K.; Zhang, H.; Bu, X. H. Chiral
magnetic metal−organic frameworks of MnII with achiral tetrazolate-
based ligands by spontaneous resolution. Chem. Commun. 2010, 46,
8543−8545. (d) Gao, E. Q.; Yue, Y. F.; Bai, S. Q.; He, Z.; Yan, C. H.
From Achiral Ligands to Chiral Coordination Polymers: Spontaneous
Resolution, Weak Ferromagnetism, and Topological Ferrimagnetism. J.
Am. Chem. Soc. 2004, 126, 1419−1429.
́
2015, 44, 5092−5147. (c) Corma, A.; Garcia, H.; Llabres i Xamena, F. X.
Engineering Metal Organic Frameworks for Heterogeneous Catalysis.
Chem. Rev. 2010, 110, 4606−4655.
(3) (a) Wales, D. J.; Grand, J.; Ting, V. P.; Burke, R. D.; Edler, K. J.;
Bowen, C. R.; Mintova, S.; Burrows, A. D. Gas sensing using porous
materials for automotive applications. Chem. Soc. Rev. 2015, 44, 4290−
4321. (b) Kaushik, A.; Kumar, R.; Arya, S. K.; Nair, M.; Malhotra, B. D.;
Bhansali, S. Organic-Inorganic Hybrid Nanocomposite-Based Gas
Sensors for Environmental Monitoring. Chem. Rev. 2015, 115, 4571−
4606. (c) Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van
Duyne, R. P.; Hupp, J. T. Metal-Organic Framework Materials as
Chemical Sensors. Chem. Rev. 2012, 112, 1105−1205.
(4) (a) Orellana-Tavra, C.; Marshall, R. J.; Baxter, E. F.; Lazaro, I. A.;
Tao, A.; Cheetham, A. K.; Forgan, R. S.; Fairen-Jimenez, D. Drug
delivery and controlled release from biocompatible metal-organic
frameworks using mechanical amophizationt. J. Mater. Chem. B 2016,
4, 7697−7707. (b) Jiang, K.; Zhang, L.; Hu, Q.; Zhao, D.; Xia, T. F.; Lin,
W. X.; Yang, Y. Y.; Cui, Y. J.; Yang, Y.; Qian, G. D. Pressure controlled
drug release in a Zr-cluster-based MOF. J. Mater. Chem. B 2016, 4,
6398−6401. (c) Wu, J.; Xu, J. W.; Liu, W. C.; Yang, S. Z.; Luo, M. M.;
Han, Y. Y.; Liu, J. Q.; Batten, S. R. Designed metal-organic framewok
based on metal-organic polyhedron: Drug delivery. Inorg. Chem.
Commun. 2016, 71, 32−34.
(5) (a) Ockwig, N. W.; Delgado-Friedrichs, O.; O’Keeffe, M.; Yaghi, O.
M. Reticular chemistry: Occurrence and taxonomy of nets and grammar
for the design of frameworks. Acc. Chem. Res. 2005, 38, 176−182.
(b) Furukawa, H.; Kim, J.; Ockwig, N. W.; O’Keeffe, M.; Yaghi, O. M.
Control of vertex geometry, structure dimensionality, functionality, and
pore metrics in the reticular synthesis of crystalline metal-organic
frameworks and polyhedral. J. Am. Chem. Soc. 2008, 130, 11650−11661.
(c) Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The
Chemistry and Applications of Metal-Organic Frameworks. Science
2013, 341, 1230444.
(6) (a) Kim, K.; Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y.
J. A homochiral metal−organic porous material for enantioselective
separation and catalysis. Nature 2000, 404, 982−986. (b) Ma, L.; Abney,
C.; Lin, W. Enantioselective catalysis with homochiral metal−organic
frameworks. Chem. Soc. Rev. 2009, 38, 1248−1256.
(13) (a) Maggard, P. A.; Stern, C. L.; Poeppelmeier, K. R.
Understanding the Role of Helical Chains in the Formation of
Noncentrosymmetric Solids. J. Am. Chem. Soc. 2001, 123, 7742−
7743. (b) Maggard, P. A.; Kopf, A. L.; Stern, C. L.; Poeppelmeier, K. R.
Probing helix formation in chains of vertex-linked octahedral.
CrystEngComm 2004, 6, 451−457. (c) Guijarro, A.; Yus, M. The Origin
of Chirality in the Molecules of Life: A Revision from Awareness to the
Current Theories and Perspectives of This Unsolved Problem; RSC
Publishing: Cambridge, U.K., 2009; pp 1−5.
(14) Falkowski, J. M.; Liu, S.; Lin, W. Asymmetric Catalysis with Chiral
Metal−Organic Frameworks. In Metal−Organic Frameworks as
Heterogeneous Catalysts; RSC Catalysis Series; Llabres i Xamena, F. X.,
́
Gascon, J., Eds.; Royal Society of London, 2013.
(15) (a) Tong, M.-L.; Chen, X.-M.; Ye, B.-H.; Ng, S. W. Helical
Silver(I) 2,4′-Bipyridine Chains Organized into 2-D Networks by Metal
Counterion or Metal Metal Bonding. Structures of [Ag(2,4′-
bipyridine)]X (X−=NO3 or ClO4). Inorg. Chem. 1998, 37, 5278−
5281. (b) Chen, X. M.; Liu, G. F. Double-Stranded Helices and
Molecular Zippers Assembled from Single-Stranded Coordination
Polymers Directed by Supramolecular Interactions. Chem. - Eur. J.
2002, 8, 4811−4817. (c) Wang, X.-L.; Qin, C.; Wang, E.-B.; Xu, L.; Su,
Z.-M.; Hu, C. W. Interlocked and Interdigitated Architectures from Self-
Assembly of Long Flexible Ligands and Cadmium Salts. Angew. Chem.,
Int. Ed. 2004, 43, 5036−5040. (d) Wang, X.-L.; Qin, C.; Wang, E.-B.; Li,
Y.-G.; Su, Z.-M. An unprecedented fivefold interpenetrated lvt network
containing the exceptional racemic motifs originated from nine
interwoven helices. Chem. Commun. 2005, 5450−5452.
(7) (a) Li, G.; Yu, W.; Cui, Y. A Homochiral Nanotubular Crystalline
Framework of Metallomacrocycles for Enantioselective Recognition
and Separation. J. Am. Chem. Soc. 2008, 130, 4582−4583. (b) Das, M.
C.; Guo, Q. S.; He, Y. B.; Kim, J.; Zhao, C. G.; Hong, K. L.; Xiang, S. C.;
Zhang, Z. J.; Thomas, K. M.; Krishna, R.; Chen, B. L. Interplay of
Metalloligand and Organic Ligand to Tune Micropores within
Isostructural Mixed-Metal Organic Frameworks (M′MOFs) for Their
Highly Selective Separation of Chiral and Achiral Small Molecules. J.
Am. Chem. Soc. 2012, 134, 8703−8710.
(8) (a) Duan, X.; Meng, Q.; Su, Y.; Li, Y.; Duan, C.; Ren, X.; Lu, C.
Multifunctional Polythreading Coordination Polymers: Spontaneous
Resolution, Nonlinear-Optic, and Ferroelectric Properties. Chem. - Eur.
J. 2011, 17, 9936−9943. (b) Evans, O. R.; Lin, W. B. Crystal Engineering
of NLO Materials Based on Metal−Organic Coordination Networks.
Acc. Chem. Res. 2002, 35, 511−522. (c) Wang, C.; Zhang, T.; Lin, W.
Rational Synthesis of Noncentrosymmetric Metal−Organic Frame-
works for Second-Order Nonlinear Optics. Chem. Rev. 2012, 112,
1084−1104.
(16) Boldog, I.; Rusanov, E. B.; Chernega, A. N.; Sieler, J.;
Domasevitch, K. V. Acentric Extended Solids by Self Assembly of
4,4′-Bipyrazolyls. Angew. Chem., Int. Ed. 2001, 40, 3435−3438.
(17) Singh, U. P.; Narang, S. A supramolecular approach towards the
construction of molecular salts using phosphonic acid and pyrazole.
CrystEngComm 2014, 16, 7777−7789.
(9) Train, C.; Gruselle, M.; Verdaguer, M. The fruitful introduction of
chirality and control of absolute configurations in molecular magnets.
Chem. Soc. Rev. 2011, 40, 3297−3312.
(18) (a) Reinares-Fisac, D.; Aguirre-Díaz, L. M.; Iglesias, M.; Snejko,
́
N.; Gutierrez-Puebla, E.; Monge, M. A.; Gandara, F. A Mesoporous
D
Inorg. Chem. XXXX, XXX, XXX−XXX