product. It is worthy to note that the catalytic allylation of ketones
for our chiral indium complex can be accomplished simply by
using allyltributyl stannane unlike other catalytic systems that
require stronger allylating reagents such as tetraallylstannanes.
In summary, we have developed a novel and practical
enantioselective catalytic system for the allylation of ketones that
provides tertiary homoallylic alcohols with moderate to high
Table 1 Evaluation of various chiral indium(III) complexes for the
asymmetric allylation reaction
Entry
PYBOX
Ketone
Yield (%)a
ee (%)b
enantiomeric excess using
a catalytic amount of chiral
In(III)-PYBOX complex. In some cases, the corresponding
allylation products could be obtained in ¢90% ee. Further efforts
are being directed toward exploring the utility of this novel
approach and the mechanism of the chiral indium–PYBOX
complex catalysed allylation reaction.{
We thank the Nanyang Technological University and the
National Natural Science Foundation of China (No. 20472062)
for providing the research funding.
1
2
3
4
5
a
1
2
3
4
5
b
PhCOCH3
PhCOCH3
PhCOCH3
PhCOCH3
PhCOCH3
20
10
30
34
80
20
26
27
31
62
Isolated yield. ee determined by HPLC.
The conjugated enone undergoes exclusively 1,2-addition in
good yield and with fair enantiomeric excess (Table 2, entry 5), the
saturated derivative reacted to give the homoallylic alcohol with
nearly the same enantiomeric excess (Table 2, entry 4). Excellent
results were obtained when cyclic ketones were used as starting
materials (Table 2, entries 6, 7, 8). During the study, we found the
role of TMSCl was crucial for the reaction, the absence of which
will result in a dramatic decrease in enantioselectivity and yield of
Notes and references
1 (a) K. C. Nicolaou, D. W. Kim and R. Baati, Angew. Chem. Int. Ed.,
2002, 41, 3701; (b) K. R. Hornberger, C. L. Hamblet and J. L. Leighton,
J. Am. Chem. Soc., 2000, 122, 12894; (c) F. X. Felpin and J. Lebreton,
J. Org. Chem., 2002, 67, 9192; (d) Y. Yamamoto, Acc. Chem. Res., 1987,
20, 243.
2 (a) S. C. Denmark and J.-P. Fu, Chem. Rev., 2003, 103, 2752; For some
examples see: (b) G. E. Keck, K. H. Tarbet and L. S. Geraci, J. Am.
Chem. Soc., 1993, 115, 8467; (c) A. L. Cosata, M. G. Piazza, E. Tagliavini,
C. Trombini and A. U. Ronchi, J. Am. Chem. Soc., 1993, 115, 7001; (d)
A. Yanagisawa, H. Nakashima, A. Ishiba and H. Yamamoto, J. Am.
Chem. Soc., 1996, 118, 4723; (e) A. Yanagisawa, A. Ishiba, H. Nakashima
and H. Yamamoto, Synlett., 1996, 88; (f) A. Yanagisawa, H. Nakashima,
Y. Nakatsuka, A. Ishiba and H. Yamamoto, Bull. Chem. Soc. Jpn., 2001,
74, 1129; (g) H. Hanawa, T. Hashimoto and K. Maruoka, J. Am. Chem.
Soc., 2003, 125, 1708; (h) P. G. Cozzi, P. Orioli, E. Tagliavini and
A. Umani-Ronchi, Tetrahedron Lett., 1997, 38, 145.
Table 2 Enantioselective allylation of ketones catalyzed by In(OTf)3-
PYBOX 5 complexa
Entry
1
Ketone
Yield (%)b
80d
ee (%)c
62 R
2
3
4
5
79
85
80
71
63e R
67 R
55 S
54 R
3 (a) P. I. Dosa and G. C. Fu, J. Am. Chem. Soc., 1998, 120, 445; (b)
D. J. Ramon and M. Yus, Tetrahedron, 1998, 54, 5651; (c) S. Casolari,
Q. Q. Addario and E. Tagliavini, Org. Lett., 1999, 1, 1061; (d)
K. M. Waltz, J. Gavenonis and P. Walsh, Angew. Chem. Int. Ed., 2002,
41, 3697; (e) A. Cunningham and S. Woodward, Synthesis, 2002, 1, 43.
4 (a) K. K. Chauhan and C. G. Frost, J. Chem. Soc., Perkin Trans. 1, 2000,
3015; (b) G. Babu and P. T. Perumal, Aldrichim. Acta, 2000, 33, 16; For
recent examples see: (c) T. Mukaiyama, T. Ohno, T. Nishimura,
J. S. Han and S. Kobayashi, Chem Lett., 1990, 2239; (d) B. M. Trost,
S. Sharma and T. Schmidt, J. Am. Chem. Soc., 1992, 114, 7903; (e)
T.-P. Loh, J. Pei and G.-Q. Cao, J. Chem. Soc., Chem. Commun., 1996,
1819; (f) T.-P. Loh, J. Pei and M. Lin, J. Chem. Soc., Chem, Commun.,
1996, 2315; (g) T.-P. Loh, G.-L. Chua, J. J. Vittal and M.-W. Wong,
J. Chem. Soc., Chem. Commun., 1998, 861; (h) T.-P. Loh and L.-L. Wei,
Tetrahedron Lett., 1998, 39, 323; (i) T.-P. Loh, J.-M. Huang, S.-H. Goh
and J. J. Vittal, Org. Lett., 2000, 2, 1291; (j) J. Yang and C.-J. Li, Synlett,
1999, 717; (k) G.-S. Viswanathan, J. Yang and C.-J. Li, Org. Lett., 1999,
1, 993; (l) B. C. Ranu and U. Jana, J. Org. Chem., 1998, 63, 8212; (m)
B. C. Ranu, A. Hajra and U. Jana, J. Org. Chem., 2000, 65, 6270; (n)
T. Ali, K. K. Chauhan and C. G. Frost, Tetrahedron Lett., 1999, 40,
5621; (o) K. K. Chauhan, C. G. Frost, I. Love and D. Waite, Synlett,
1999, 1743; (p) T. Tsuchimoto, T. Maeda, E. Shirakawa and
Y. Kawakami, J. Chem. Soc., Chem. Commun, 2000, 1573; (q)
S. Gadhwal and J. S. Sandhu, J. Chem. Soc., Perkin Trans. 1, 2000,
2827; (r) T.-P. Loh, Q.-Y. Hu and L.-T. Ma, J. Am. Chem. Soc., 2001,
123, 2450; (s) C.-J. Zhu, F. Yuan, W.-J. Gu and Y. Pan, J. Chem. Soc.,
Chem. Commun., 2003, 692; (t) T.-P. Loh, in Science of Synthesis, ed.
H. Yamamoto, Georg Thieme Verlag Stuttgart, New York, 2004, p. 413.
5 (a) T.-P. Loh, J.-R. Zhou and Z. Yin, Org. Lett., 1999, 1, 1855; (b)
T.-P. Loh and J.-R. Zhou, Tetrahedron Lett., 1999, 40, 9115; (c)
T.-P. Loh, J.-R. Zhou and X.-R. Li, Tetrahedron Lett., 1999, 40, 9333; (d)
J. Lu, S.-J. Ji, Y.-C. Teo and T.-P Loh, Org. Lett., 2005, 1, 159; (e) J. Lu,
M.-L. Hong, S.-J. Ji and T.-P Loh, Chem. Commun., 2005, 1010; (f) J. Lu,
S.-J. Ji and T.-P Loh, Chem. Commun., 2005, 2345.
6
7
8
90
40
68
95 R
90 R
84 R
a
All the reactions were carried out with ketone (1 equiv.), TMSCl
(1.2 equiv.) and allyltributylstannane (1.2 equiv.) using In(OTf)3
(0.2 equiv.) and (S)-i-PrPYBOX 5 (0.22 equiv.) in the presence of
˚
activated MS 4 A in anhydrous CH2Cl2. The reaction mixture was
b
c
kept for 70 h at 0 uC. Isolated yield. ee determined by HPLC, the
absolute configuration of products was assigned by comparison with
optical rotation and/or retention time on chiral HPLC in ref. 6. For
d
further details see supporting information. 85% of chiral ligand
was recovered. Recovered (S)-i-PrPYBOX 5 was used for the
reaction.
e
6 Y.-C. Teo, J.-D. Goh and T.-P. Loh, Org. Lett., 2005, 13, 2743.
4218 | Chem. Commun., 2005, 4217–4218
This journal is ß The Royal Society of Chemistry 2005