10.1002/anie.201711816
Angewandte Chemie International Edition
COMMUNICATION
Me
Me
P. Conti-Ramsden, J. N. Harvey, D. Leonori, V. K. Aggarwal, J. Am.
Chem. Soc. 2016, 138, 9521; d) V. Ganesh, M. Odachowski, V. K.
Aggarwal, Angew. Chem. Int. Ed. 2017, 56, 9752 – 9756; Angew.
Chem. 2017, 129, 9884; e) S. Aichhorn, R. Bigler, E. L. Myers, V. K.
Aggarwal, J. Am. Chem. Soc. 2017, 139, 9519; f) C. M. Wilson, V.
Ganesh, A. Noble, V. K. Aggarwal, Angew. Chem. Int. Ed. 2017, 56,
DOI: 10.1002/anie.201710777; Angew. Chem. 2017, 129, DOI:
10.1002/ange.201710777.
Me
I2
Bpin
Bpin
Cr0
Cr0
elimination
oxidation
CrII
OC
OC
OC
OC
OC
OC
CO
CO
CO
HOR
1,2-migration
(not observed)
Me
Bpin
Bpin
I2
I
Cr0
+
Cr0
Me
OC
OC
SN2-iodination
(minor)
OC
OC
[5]
a) S. Panda, A. Coffin, Q. N. Nguyen, D. J. Tantillo, J. M. Ready,
Angew. Chem. Int. Ed. 2016, 55, 2205; Angew. Chem. 2016, 128,
2245; b) S. Panda, J. M. Ready, J. Am. Chem. Soc. 2017, 139, 6038.
E. P. Kündig in Topics in Organometallic Chemistry VII (Ed: E. P.
Kündig), Springer, Berlin, 2004, pp. 3 – 20.
CO
CO
4
oxidation
(major)
I2
[6]
[7]
Me
Bpin
Me
Me
I2
a) M. F. Semmelhack in Comprehensive Organometallic Chemistry II
(Eds.: E. W. Abel, F. G. A. Stone, G. Wilkinson), Pergamon, Oxford,
1995, pp. 979 – 1015; b) M. F. Semmelhack, A. Chlenov in Topics in
Organometallic Chemistry VII (Ed: E. P. Kündig), Springer, Berlin, 2004,
pp. 43 – 69.
Bpin
Cr0
CrII
OC
CrII
OC
OC
Me
OC
OC
CO
CO
CO
HOR
elimination
OC
1,2-migration
decomplexation
Scheme 3. Proposed mechanism for chromium arene-mediated coupling.
[8]
[9]
a) P. Ricci, K. Krämer, X. C. Cambeiro, I. Larrosa, J. Am. CHem. Soc.
2013, 135, 13258; b) P. Ricci, K. Krämer, I. Larrosa, J. Am. CHem. Soc.
2014, 136, 18082; c) D. Whitaker, M. Batuecas, P. Ricci, I. Larrosa,
Chem. Eur. J. 2017, 23, 12763.
on selective oxidation of Cr(0) followed by 1,2-migration and
elimination is proposed. Although there has been a recent surge
in stereoselective cross-coupling strategies,2–5 most of the
products presented here are inaccessible by such methods.
Thus, the current method is a valuable addition to the ever-
growing arsenal of cross-coupling reactions.
R. Larouche-Gauthier, T. G. Elford, V. K. Aggarwal, J. Am. Chem. Soc.
2011, 133, 16794.
[10] OTIPS and NMe2 do not act as ortho-directing groups for the lithiation
of chromium arene complexes, see: a) N. F. Masters, D. A. Widdowson,
J. Chem. Soc., Chem. Commun 1983, 955; b) R. J. Card, W. S.
Trahanovsky, J. Org. Chem. 1980, 45, 2560.
[11] H.-G. Schmalz, T. Volk, D. Bernicke, S. Huneck, Tetrahedron 1997, 53,
9219.
[12] For a related substrate, see: J. C. Gill, B. A. Marples, J. R. Traynor,
Tetrahedron Lett. 1987, 28, 2643.
Acknowledgements
[13] M. F. Costa, M. R. G. da Costa, M. J. M. Curto, M. Magrinho, A. M.
Damas, L. Gales, J. Organomet. Chem. 2001, 632, 27.
We thank Dr. Natalie E. Pridmore for X-ray analysis of 4 and the
[14] For recent review articles, see: a) J. Wang, M. Sánchez-Roselló, J. Luis
Aceña, C. del Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok, H.
Liu, Chem. Rev. 2014, 114, 2432; b) T. Fujiwara, D. O’Hagan, J. Fluor.
Chem. 2014, 167, 16.
University of Bristol for financial support. R.B. thanks the Swiss
National
Science
Foundation
fellowship
program
(P2EZP2_1652).
[15] CCDC 1585569 contains the supplementary crystallographic data for
this paper. These data can be obtained free of charge from The
Keywords: boronic esters • chromium complexes • aromatics •
arylation • cross-coupling
Cambridge
Crystallographic
Data
Centre
via
[16] T. M. Gilbert, C. B. Bauer, R. D. Rogers, J. Chem. Crystallogr. 1996, 26,
[1]
[2]
For recent review articles, see: a) D. Leonori, V. K. Aggarwal, Angew.
Chem. Int. Ed. 2015, 54, 1082; Angew. Chem. 2015, 127, 1096; b) C.-
Y.Wang, J. Derosa, M. R. Biscoe, Chem. Sci. 2015, 6, 5105; c) A. H.
Cherney, N. T. Kadunce, S. E. Reisman, Chem. Rev. 2015, 115, 9587.
a) S.-M. Zhoi, M.-Z. Deng, L.-J. Xia, M.-H. Tang, Angew. Chem. Int. Ed.
1998, 37, 2845; Angew. Chem. 1998, 110, 3061; b) M. Rubina, M.
Rubin, V. Gevorgyan, J. Am. Chem. Soc. 2003, 125, 7198; c) T.
Ohmura, T. Awano, M. Suginome, J. Am. Chem. Soc. 2010, 132,
13191; d) T. Awano, T. Ohmura, M. Suginome, J. Am. Chem. Soc.
2011, 133, 20738; e) B. W. Glasspoole, M. S. Oderinde, B. D. Moore, A.
Antoft-Finch, C. M. Crudden, Synthesis 2013, 45, 1759; f) D. Imao, B.
W. Glasspoole, V. S. Laberge, C. M. Crudden, J. Am. Chem. Soc. 2009,
131, 5024; g) S. C. Matthew, B. W. Glasspoole, P. Eisenberger, C. M.
Crudden, J. Am. Chem. Soc. 2014, 136, 5828; h) L. Chausset-Boissarie,
K. Ghozati, E. LaBine, J. L.-Y. Chen, V. K. Aggarwal, C. M. Crudden,
Chem. Eur. J. 2013, 19, 17698.
355.
[17] C. A. L. Mahaffy, P. L. Pauson, Inorg. Synth. 1979, 19, 154.
[3]
For related trifluoroborates, see: a) G.-H. Fang, Z.-J. Yan, M.-Z. Deng,
Org. Lett. 2004, 6, 357; b) D. L. Sandrock, L. Jean-Gérard, C. Chen, S.
D. Dreher, G. A. Molander, J. Am. Chem. Soc. 2010, 132, 17108; c) J.
C. H. Lee, R. McDonald, D. G. Hall, Nat. Chem. 2011, 3, 894; d) G. A.
Molander, S. R. Wisniewski, J. Am. Chem. Soc. 2012, 134, 16856; e) L.
Li, S. Zhao, A. Joshi-Pangu, M. Diane, M. R. Biscoe, J. Am. Chem. Soc.
2014, 136, 14027; f) Y. Lou, P. Cao, T. Jia, Y. Zhang, M. Wang, J. Liao,
Angew. Chem. Int. Ed. 2015, 54, 12134; Angew. Chem. 2015, 127,
12302.
[4]
a) A. Bonet, M. Odachowski, D. Leonori, S. Essafi, V. K. Aggarwal, Nat.
Chem. 2014, 6, 584; b) J. Llaveria, D. Leonori, V. K. Aggarwal, J. Am.
Chem. Soc. 2015, 137, 10958; c) M. Odachowski, A. Bonet, S. Essafi,
This article is protected by copyright. All rights reserved.