3
1
2
3
4
5
6
7
8
9
out under the previously reported conditions (conditions A,
blue bars), where the result considerably depended on the
boronates used.7,13 The decrease in the yield of 3c was
observed with the increase in the steric bulk around the
boron moiety. These contrasting results indicated that the
new catalytic system using copper(II) sulfate and TMEDA
with cesium fluoride as the Lewis base significantly
facilitates deborylthiolation compared to the previous
system, probably via the acceleration of transmetalation.
51
This work was supported by the Platform Project for
52 Supporting Drug Discovery and Life Science Research
53 funded by Japan Agency for Medical Research and
54 Development (AMED); JSPS KAKENHI Grant Numbers
55 15H03118 (B; T.H.), 16H01133 (Middle Molecular
56 Strategy; T.H.), 26350971 (C; S.Y.); Suntory Foundation
57 for Life Sciences (S.Y.); Naito Foundation (S.Y.).
58
59
Supporting
Information
is
available
on
10 Moreover, phenylcyclic-triolborate potassium salt 8 was
11 deborylthiolated under the new conditions, whereas
12 potassium phenyltrifluoroborate (9) afforded 3c in poor
13 yields under both conditions.
61
62 References and Notes
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
1
For selected reviews of bioactive sulfur-containing compounds,
see: a) K. Pluta, B. Morak-Młodawska, M. Jeleń, Eur. J. Med.
Chem. 2011, 46, 3179. b) E. A. Ilardi, E. Vitaku, J. T. Njardarson,
J. Med. Chem. 2014, 57, 2832.
Recent examples of our studies on sulfur-containing bioactive
compounds, see: a) Y. Ogawa, Y. Nonaka, T. Goto, E. Ohnishi,
T. Hiramatsu, I. Kii, M. Yoshida, T. Ikura, H. Onogi, H. Shibuya,
T. Hosoya, N. Ito, M. Hagiwara, Nat. Commun. 2010, 1, 86. b) I.
Kii, Y. Sumida, T. Goto, R. Sonamoto, Y. Okuno, S. Yoshida, T.
Kato-Sumida, Y. Koike, M. Abe, Y. Nonaka, T. Ikura, N. Ito, H.
Shibuya, T. Hosoya, M. Hagiwara, Nat. Commun. 2016, 7,
11391.
For selected reviews of sulfur-containing compounds in
agrochemistry, see: a) J. V. Hay, Pestic. Sci. 1990, 29, 247. b) E.
Block, Angew. Chem., Int. Ed. Engl. 1992, 31, 1135. c) N. I.
Joyce, C. C. Eady, P. Silcock, N. B. Perry, J. W. van Klink, J.
Agric. Food Chem. 2013, 61, 1449.
For selected reviews of sulfur-containing compounds in materials
science, see: a) A. S. Rahate, K. R. Nemade, S. A. Waghuley,
Rev. Chem. Eng. 2013, 29, 471. b) S. Dadashi-Silab, C. Aydogan,
Y. Yagci, Polym. Chem. 2015, 6, 6595.
14
As various arylboronic esters can be easily prepared
15 from simple starting materials by the transition-metal-
16 catalyzed borylative transformation of C–X,10 C–H,11 C–F,14
17 C–S,15 and C–COSR16 bonds, performing the ipso-thiolation
18 just after borylation facilitated the two-step synthesis aryl
19 sulfides. For example, formal C–H thiolation was
20 accomplished by the iridium-catalyzed C–H borylation11 of
21 1,2-dimethoxybenzene (10)17 followed by deborylthiolation,
22 affording desired sulfide 3t in high yield (Scheme 1). In this
23 case, the use of the modified conditions was crucial to
24 efficiently achieve ipso-borylation as the previous
25 conditions afforded 3t only in low yield. Notably, in
26 addition, the transformation of 10 to 3t was achieved with
27 the same efficiency even when the sequential reaction was
28 conducted in a same pot without purifying intermediate 1k.
29 This procedure demonstrated promise as a rapid route to
30 synthesize aryl sulfides from boron-free substrates.
31
2
3
4
5
6
7
S. Yoshida, Y. Sugimura, Y. Hazama, Y. Nishiyama, T. Yano, S.
Shimizu, T. Hosoya, Chem. Commun. 2015, 51, 16613.
K. Kanemoto, Y. Sugimura, S. Shimizu, S. Yoshida, T. Hosoya,
Chem. Commun. 2017, 53, 10640.
For a review comparing the properties of boronic acid derivatives,
see: A. J. J. Lennox, G. C. Lloyd-Jones, Chem. Soc. Rev. 2014,
43, 412.
Ts
p-Tol
S
2a
CuSO4 (5 mol %)
TMEDA (6 mol %)
CsF (2.0 equiv)
(Bpin)2
cat. Ir
MeO
MeO
MeO
MeO
MeO
MeO
MeOH
50 °C, 24 h
p-Tol
Bpin
S
87% [10%]a
10
1k
76%
3t
8
For selected examples describing the low reactivity of boronic
acid esters, see: a) M. Prieto, E. Zurita, E. Rosa, L. Muñoz, P.
Lloyd-Williams, E. Giralt, J. Org. Chem. 2004, 69, 6812. b) K. A.
McGarry, A. A. Duenas, T. B. Clark, J. Org. Chem. 2015, 80,
7193. c) J. C. Vantourout, R. P. Law, A. Isidro-Llobet, S. J.
Atkinson, A. J. B. Watson, J. Org. Chem. 2016, 81, 3942.
For selected examples of thiolation of boronic esters, see: a) C.-L.
Yi, T.-J. Liu, J.-H. Cheng, C.-F. Lee, Eur. J. Org. Chem. 2013,
3910. b) Z. Qiao, N. Ge, X. Jiang, Chem. Commun. 2015, 51,
10295. c) J. C. Vantourout, H. N. Miras, A. Isidro-Llobet, S.
Sproules, A. J. B. Watson, J. Am. Chem. Soc. 2017, 139, 4769.
For selected reviews of dehalogenative borylations, see: a) T.
Ishiyama, N. Miyaura, Chem. Rec. 2004, 3, 271. b) W. K. Chow,
O. Y. Yuen, P. Y. Choy, C. M. So, C. P. Lau, W. T. Wong, F. Y.
Kwong, RSC Adv. 2013, 3, 12518.
For selected examples of C–H borylations, see: a) C. N. Iverson,
M. R. Smith, III, J. Am. Chem. Soc. 1999, 121, 7696. b) J.-Y.
Cho, C. N. Iverson, M. R. Smith, III, J. Am. Chem. Soc. 2000,
122, 12868. c) J.-Y. Cho, M. K. Tse, D. Holmes, R. E. Maleczka,
Jr., M. R. Smith, III, Science, 2002, 295, 305. d) T. Ishiyama, J.
Takagi, K. Ishida, N. Miyaura, N. R. Anastasi, J. F. Hartwig, J.
Am. Chem. Soc. 2002, 124, 390. For ortho-selective borylation,
see: e) T. A. Boebel, J. F. Hartwig, J. Am. Chem. Soc. 2008, 130,
7534. For meta-selective borylation, see: f) Y. Kuninobu, H. Ida,
M. Nishi, M. Kanai, Nat. Chem. 2015, 7, 712. For para-selective
borylation, see: g) Y. Saito, Y. Segawa, K. Itami, J. Am. Chem.
Soc. 2015, 137, 5193. For reviews, see: h) I. A. I. Mkhalid, J. H.
1. (Bpin)2, cat. Ir, heptane
2. evaporation, then
2a, cat. Cu
61%
same pot
32
33 Scheme 1. Formal C–H thiolation of 1,2-dimethoxybenzene (10).
34 aYield of 3t when the reaction was carried out under the previous
35 copper-catalyzed conditions (Conditions A: CuSO4 (5 mol %), NaHCO3
36 (2.0 equiv), MeOH, rt, 24 h) in brackets.
9
37
38
In summary, the efficient ipso-thiolation of arylboronic
102 10
103
39 acid esters with thiosulfonates using modified copper-
40 catalyzed conditions was reported. The use of cesium
41 fluoride and catalytic amount of TMEDA as the base and
42 ligand, respectively, dramatically facilitated the desired
43 transformation, affording diverse aryl sulfides from easily
44 available starting materials. In addition, the formal C–H
45 thiolation of a simple arene was achieved via the iridium-
46 catalyzed C–H borylation followed by ipso-thiolation. This
47 sequential reaction was conducted in the same pot,
48 considerably expanding the range of synthesizable sulfides
49 in an expeditious manner.
104
105
106 11
107
108
109
110
111
112
113
114
115
50
116
117