PAPER
Deoxygenation of Sulfoxides to Sulfides
2545
O
Table 4 Comparison of the Deoxygenation of Dibenzyl Sulfoxide
to Dibenzyl Sulfide by the Triflic Anhydride/Potassium Iodide Sys-
tem with the Literature
PhCO2Me
+
Ph
Ph
Ph
S
Ph
+
Ph
96%
S
Ph
PhCO2Me
100%
Reagent
Temp
r.t.
Time
3 min
2 h
Yield (%)
98
O
S
4-ClC6H4CHO
100%
Me
4-ClC6H4CHO
4-BrC6H4CO2H
Tf2O, KI, MeCN
+
Ph
S
Me
+
+
93%
NiCI2/NaBH4 (3:9), THF
PhSiH3, MoO2Cl2, toluene
2,6-dihydroxypyridine, MeCN
Ph3P, TiCl4 THF
0 °C
reflux
reflux
r.t.
8111
O
S
20 h
4 h
9512
+
Bn
Ph
S
Bn
4-BrC6H4CO2H
100%
9813
95%
O
9614
O
2 h
TiI4, MeCN
0 °C
r.t.
10 min 8515
20 min 9816
+
Ph
CH=NOH
+Ph CH=NOH
S
S
BF3·OEt2, NaI, MeCN
BBr3, CH2Cl2
O
–23 to 0 °C 40 min 9117
100%
95%
Scheme
2
Reagents and conditions: ratio substrate/Tf2O/KI
(1:1:1:2.5), MeCN, r.t.
Diphenyl Sulfide (2a)
Pale yellow liquid (Lit.8a pale yellow liquid).
1H NMR (200 MHz, CDCl3): d = 7.32–7.25 (m, 10 H).
13C NMR (50 MHz, CDCl3): d = 136.0, 131.1, 129.5, 127.0.
O
S
I
SO2CF3
R2
O:
O
S
O
KI
R1
R1
S
R2 + F3C
S
O
CF3
–
– CF3SO3
O
O
Benzyl 4-Chlorophenyl Sulfide (2m)
–
– CF3SO3
Pale pink solid; mp 52–53 °C (Lit.8d 51–52 °C).
1H NMR (200 MHz, CDCl3): d = 7.30–7.25 (m, 9 H), 4.1 (s, 2 H).
13C NMR (50 MHz, CDCl3): d = 137.3, 134.8, 132.4, 131.5, 129.0,
128.7, 128.6, 127.5, 39.3.
R1
R2
+
R1
S
R2
I2
S
+
I
I–
Dibutyl Sulfide (2x)
Scheme 3 Proposed mechanism for the deoxygenation of sulfox-
ides to the corresponding sulfides with triflic anhydride/potassium
iodide system
Colorless oil (Lit.8b colorless oil).
1H NMR (200 MHz, CDCl3): d = 3.60–0.41 (m, 18 H).
13C NMR (50 MHz, CDCl3): d = 46.1, 45.8, 29.7, 8.9.
deoxygenation reagent for sulfoxides. The present proce-
dure shows good chemoselectivity, and, under these con-
ditions, the reaction is rapid and equally applicable to
dialkyl, aryl alkyl, and diaryl sulfoxides. Thus, the use of
the triflic anhydride/potassium iodide system is a good ad-
dition to the existing methodologies for the deoxygen-
ation of sulfoxides.
Acknowledgment
We are thankful to the Razi University Research Council for partial
support to this work.
References
(1) Black, S.; Harte, E. M.; Hudson, B.; Wartofsky, L. J. Biol.
Chem. 1960, 235, 2910.
Melting points were determined in a capillary tube and are not cor-
rected. 1H NMR and 13C NMR spectra were recorded on a Bruker-
200 NMR spectrometer using TMS as internal standard.
(2) (a) Khurana, J. M.; Ray, A.; Singh, S. Tetrahedron Lett.
1998, 39, 3829. (b) Karimi, B.; Zareyee, D. Synthesis 2003,
1875. (c) Iranpoor, N.; Firouzabadi, H.; Shaterian, H. R.
J. Org. Chem. 2002, 67, 2826. (d) Karimi, B.; Zareyee, D.
Synthesis 2003, 335. (e) Posner, G. H.; Tang, P. W. J. Org.
Chem. 1978, 43, 4131. (f) Madesclaire, M. Tetrahedron
1988, 44, 6537.
(3) (a) Firouzabadi, H.; Karimi, B. Synthesis 1999, 500.
(b) Yoo, B.; Choi, K. H.; Kim, D. Y.; Choi, K. I.; Kim, J. H.
Synth. Commun. 2003, 33, 53. (c) Miller, S. J.; Collier, T.
R.; Wu, W. Tetrahedron Lett. 2000, 41, 3781.
(4) (a) Szmant, H. H.; Cox, O. J. Org. Chem. 1966, 31, 1595.
(b) Kikuchi, S.; Konishi, H.; Hashimoto, Y. Tetrahedron
2005, 61, 3587. (c) Kikuchi, S.; Hashimoto, Y. Synlett 2004,
1267. (d) Hashimoto, Y.; Konishi, H.; Kikuchi, S. Synlett
2004, 1264. (e) Hashimoto, Y.; Kikuchi, S. Chem. Lett.
2002, 126.
Sulfides; General Procedure
To a flask containing a stirred mixture of sulfoxide (1 mmol) in
MeCN (5 mL), Tf2O (0.17 mL, 1 mmol) and KI (2.5 mmol, 0.42 g)
were added. The mixture was stirred magnetically at r.t. and moni-
tored by TLC. On completion of the reaction, the solvent was evap-
orated and then sat. aq NaHCO3 (10 mL) was added to destroy the
unreacted Tf2O. The mixture was extracted with EtOAc (4 × 5 mL)
and the extract dried (anhyd MgSO4). The filtrate was evaporated
and the corresponding sulfide was obtained as the sole product
(Table 3). Spectral and physical data for selected compounds fol-
low.
Synthesis 2008, No. 16, 2543–2546 © Thieme Stuttgart · New York