A. K. Verma et al. / Tetrahedron Letters 48 (2007) 4207–4210
4209
aryl bromide 2h was evaluated and the results are sum-
Acknowledgements
marized in Table 2. In the presence of CuI (5 mol %),
BtH (10 mol %) and KOt-Bu (1.4 equiv), the N-aryl-
ation of 1a with 2a and 2h occurred smoothly to afford
the corresponding products in 95% and 98% yields,
respectively. Encouraged by these results, a variety of
aryl halides 2b–j were treated with 1a or 1b under the
standard reaction conditions. The results obtained indi-
cated that all the aryl iodides with electron releasing
substituents underwent N-arylation smoothly in 3–8 h.
These N-arylations of deactivated haloarenes using
KOt-Bu as base were quite impressive over unreactive
systems using other bases (Table 1). The catalyst system
developed was also successfully amenable to the N-aryl-
ation of imidazoles with fluoroarenes (Table 2, entries 9
and 10). As illustrated in Table 2, 1-fluoro-2-nitro-
benzene 2i and 2-fluorobenzonitrile 2j gave the desired
products in short reaction times (30 min), in 100%
yields.
We thank the Department of Science and Technology,
New Delhi, for financial support. J.S. is thankful to
the CSIR for SRF.
References and notes
1
. For selected recent examples, see: (a) Zhong, C.; He, J.;
Xue, C.; Li, Y. Bioorg. Med. Chem. 2004, 12, 4009; (b)
Dyck, B.; Goodfellow, V. S.; Phillips, T.; Grey, J.;
Haddach, M.; Rowbottom, M.; Naeve, G. S.; Brown, B.;
Saunders, J. Bioorg. Med. Chem. Lett. 2004, 14, 1151; (c)
Smallheer, J. M.; Alexander, R. S.; Wang, J.; Wang, S.;
Nakajima, S.; Rossi, K. A.; Smallwod, A.; Barbera, F.;
Burdick, D.; Luettgen, J. M.; Knabb, R. M.; Wexler, R. R.;
Jadhav, P. K. Bioorg. Med. Chem. Lett. 2004, 14, 5263; (d)
Qiao, J. X.; Cheng, X.; Modi, D. P.; Rossi, K. A.; Luettgen,
J. M.; Knabb, R. M.; Jadhav, P. K.; Wexler, R. R. Bioorg.
Med. Chem. Lett. 2005, 15, 29; (e) Mano, T.; Okumura, Y.;
Sakakibara, M.; Okumura, T.; Tamura, T.; Miyamoto, K.;
Stevens, R. W. J. Med. Chem. 2004, 47, 720; (f) Roppe, J.;
Smith, N. D.; Huang, D.; Tehrani, L.; Wang, B.; Anderson,
J.; Brodkin, J.; Chung, J.; Jiang, X.; King, C.; Munoz, B.;
Varney, M. A.; Prasit, P.; Cosford, N. D. P. J. Med. Chem.
2004, 47, 4645; (g) Venkatesan, A. M.; Gu, Y.; Santos, O.
D.; Abe, T.; Agarwal, A.; Yang, Y.; Petersen, P. J.; Weiss,
W. J.; Mansour, T. S.; Nukaga, M.; Hujer, A. M.; Bonomo,
R. A.; Knox, J. R. J. Med. Chem. 2004, 47, 6556; (h) Lange,
J. H. M.; van Stuivenberg, H. H.; Coolen, H. K. A. C.;
Adolfs, T. J. P.; McCreary, A. C.; Keizer, H. G.; Wals, H.
C.; Veerman, W.; Borst, A. J. M.; de Looff, W.; Verveer, P.
C.; Kruse, C. G. J. Med. Chem. 2005, 48, 1823; (i) Quan, M.
L.; Lam, P. Y. S.; Han, Q.; Pinto, D. J. P.; He, M. Y.; Li,
R.; Ellis, C. D.; Clark, C. G.; Teleha, C. A.; Sun, J.-H.;
Alexander, R. S.; Bai, S.; Luettgen, J. M.; Knabb, R. M.;
Wong, P. C.; Wexler, R. R. J. Med. Chem. 2005, 48, 1729;
As described in Scheme 1 we have formulated a possible
mechanism for the copper catalyzed N-arylation of
imidazoles based on the previously reported mecha-
2
,4,9
nism.
Chelation of Cu(I) with BtH occurs to form
the Cu(I) species L1, which is more reactive towards oxi-
9
dative addition than stabilized intermediate L2 gener-
ated by the oxidative addition of L1 to the aryl halide.
In the presence of base, imidazole reacted with interme-
diate L2 readily to afford intermediate L3, which under-
goes reductive elimination to provide the desired
product and regenerate the active Cu(I) species. Further
study on the mechanism is in progress.
In conclusion, we have reported that BtH is an excellent,
inexpensive and simple ligand for the N-arylation of imi-
dazoles with a diverse range of aryl halides providing
excellent yields of products. Efforts are being made to
extend the application of the CuI/BtH/base system to
the formation of other C–N bonds.
(
j) Barch e´ chath, S. D.; Tawatao, R. I.; Corr, M.; Carson,
D. A.; Cottam, H. B. J. Med. Chem. 2005, 48, 6409; (k)
Voets, M.; Antes, I.; Scherer, C.; M u¨ ller-Vieira, U.; Biemel,
K.; Barassin, C.; Marchais-Oberwinkler, S.; Hartmann, R.
W. J. Med. Chem. 2005, 48, 6632; (l) Wiglenda, T.; Ott, I.;
Kircher, B.; Schumacher, P.; Schuster, D.; Langer, T.;
Gust, R. J. Med. Chem. 2005, 48, 6516; (m) Jiang, W.;
Guan, J.; Macielag, M. J.; Zhang, S.; Qiu, Y.; Kraft, P.;
Bhattacharjee, S.; John, T. M.; Haynes-Johnson, D.;
Lundeen, S.; Sui, Z. J. Med. Chem. 2005, 48, 2126.
N
N
N
H
Cu
ArX
ArNu
3
2
. (a) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. Rev.
L1
2
2
004, 248, 2337; (b) Ley, S. V.; Thomas, A. W. Angew.
Chem., Int. Ed. 2003, 42, 5400; (c) Lindley, J. Tetrahedron
984, 40, 1433.
reductive
elimination
oxidative
addition
1
3
. Jiang, L.; Buchwald, S. L. Palladium-Catalyzed Aromatic
Carbon–Nitrogen bond Formation. In Metal-catalyzed
Cross-Coupling Reactions; 2nd ed., de Meijere, A., Diede-
rich, F., Eds.; Wiley-VCH: Weinheim, 2004; pp 699–760.
N
N
N
N
H
N
4. For papers on copper-catalyzed N-arylations of imidazoles
with aryl halides, see: (a) Liu, Y.-H.; Chen, C.; Yang, L.-M.
Tetrahedron Lett. 2006, 47, 9275–9278; (b) Xie, Y.-X.; Pi,
S.-F.; Wang, J.; Yin, D.-L.; Li, J.-H. J. Org. Chem. 2006,
Ar
N
H
Ar
Nu
Cu
Cu
X
L2
L3
7
1, 8324–8327; (c) Kiyomori, A.; Marcoux, J. F.; Buch-
wald, S. L. Tetrahedron Lett. 1999, 40, 2657; (d) Kuil, M.;
Bekedam, E. K.; Visser, G. M.; van den Hoogenband, A.;
Terpstra, J. W.; Kamer, P. C. J.; Van Leeuwen, P. W. N.
M.; Van Strijdonck, G. P. F. Tetrahedron Lett. 2005, 46,
NuH + base
Nu = imidazole or benzimidazole
X
2
2
405; (e) Altman, R. A.; Buchwald, S. L. Org. Lett. 2006, 8,
779; (f) Kuil, M.; Bekedam, E. K.; Visser, G. M.; van den
Scheme 1.
Hoogenband, A.; Terpstra, J. W.; Kamer, P. C.; van