REUSABLE CATALYST FOR CHAN-LAM CROSS COUPLING REACTION
7 of 8
4
| CONCLUSIONS
[13] A. Mahanta, P. K. Raul, S. Saikia, U. Bora, A. J. Thakur, Appl.
Organometal. Chem. 2018, 32, e4192.
[
14] M. L. Quan, P. Y. S. Lam, Q. Han, D. J. P. Pinto, M. Y. He,
R. Li, C. D. Ellis, C. G. Clark, C. A. Teleha, J. H. Sun,
R. S. Alexander, S. Bai, J. M. Luettgen, R. M. Knabb,
P. C. Wong, R. R. Wexler, J. Med. Chem. 2005, 48, 1729.
15] S. Ueda, M. Su, S. L. Buchwald, J. Am. Chem. Soc. 2012,
134, 700.
Montmorillonite, which is an inexpensive and environ-
mentally sustainable clay, proves to be an excellent host
for the adsorption of copper sulfate. And this resourceful
heterogeneousness actively surmounts the selective use
of homogeneous catalysts. Moreover, the Cu(II)@MMT
catalytic system shows excellent result with easy recovery
and reuse. The system does not require environmentally
unfavorable organic ligands, is less expensive and avoids
protodeboronation of arylboronic acid. The robustness
and simplicity of this heterogeneous catalyst makes it
attractive for industrial application and also promising
for researchers in the exploration of new synthetic
strategies.
[
[16] B. Narasimhan, D. Sharma, P. Kumar, Med. Chem. Res. 2011,
0, 1119.
2
[
[
[
17] H. Niedermeyer, J. P. Hallett, I. J. Villar-Garcia, P. A. Hunt,
T. Welton, Chem. Soc. Rev. 2012, 41, 7780.
18] F. E. Hahn, M. C. Jahnke, Angew. Chem. Int. Ed. 2008, 47,
3122.
19] L.-A. Schaper, S. J. Hock, W. A. Herrmann, F. E. Kuhn,
Angew. Chem. Int. Ed. 2013, 52, 270.
[20] F. Ullmann, E. Illgen, Ber. Dtsch. Chem. Ges. 1914, 47, 380.
[21] B. P. Fors, N. R. Davis, S. L. Buchwald, J. Am. Chem. Soc.
2
009, 131, 5766.
ACKNOWLEDGMENTS
The authors thank the Department of Science and
Technology, New Delhi for providing financial support
[
[
[
[
[
22] J. F. Hartwig, Synlett 2006, 1283.
23] J. F. Hartwig, Nature 2008, 455, 314.
24] J. F. Hartwig, Acc. Chem. Res. 2008, 41, 1534.
25] P. Ruiz-Castillo, S. L. Buchwald, Chem. Rev. 2016, 116, 12564.
26] D. M. T. Chan, K. L. Monaco, R.-P. Wang, M. P. Winters,
Tetrahedron Lett. 1998, 39, 2933.
(no. EMR/2016/005944). M.S. thanks Tezpur University
for providing an institutional fellowship and CSIR, New
Delhi for financial assistance in the form of a CSIR-SRF
fellowship. A.D. acknowledges DST, New Delhi for finan-
cial support. We are also grateful to Professor A. J.
Thakur for fruitful discussions.
[27] P. Y. S. Lam, C. G. Clark, S. Saubernt, J. Adams,
M. P. Winters, D. M. T. Chan, A. Combs, Tetrahedron Lett.
1
28] J. P. Collman, M. Zhong, Org. Lett. 2000, 2, 1233.
29] J. P. Collman, M. Zhong, L. Zeng, S. Costanzo, J. Org. Chem.
998, 39, 2941.
[
[
2
001, 66, 1528.
ORCID
[
30] S. A. Rossi, K. W. Shimkin, Q. Xu, L. M. Mori-Quiroz,
D. A. Watson, Org. Lett. 2013, 15, 2314.
[
31] S. Shi, R. Lalancette, R. Szostak, M. Szostak, Org. Lett. 2019,
REFERENCES
21, 1253.
[
1] G. Jaouen, N. Metzler-Nolte, Medicinal Organometallic
Chemistry, Vol. 32, Springer 2010.
[32] M. Mondal, G. Sarmah, K. Gogoi, U. Bora, Tetrahedron Lett.
2012, 53, 6219.
[
2] P. A. Wender, F. C. Bi, G. G. Gamber, F. Gosselin,
R. D. Hubbard, M. J. Scanio, R. Sun, T. J. Williams, L. Zhang,
Pure Appl. Chem. 2002, 74, 25.
[33] A. Hosseinian, L. Zare Fekri, A. Monfared, E. Vessally,
M. Nikpassand, J. Sulfur Chem. 2018, 39, 674.
[34] W. Jiang, N. Li, L. Zhou, Q. Zeng, ACS Catal. 2018, 8, 9899.
[35] P. Y. S. Lam, G. Vincent, D. Bonne, C. G. Clark, Tetrahedron
Lett. 2003, 44, 4927.
[36] T. D. Quach, R. A. Batey, Org. Lett. 2003, 5, 4397.
[37] X. Tang, W. Wu, W. Zeng, H. Jiang, Acc. Chem. Res. 2018, 51,
1092.
[
[
3] A. D. Phillips, L. Gonsalvi, A. Romerosa, F. Vizza,
M. Peruzzini, Coord. Chem. Rev. 2004, 248, 955.
4] F. Schröder, D. Esken, M. Cokoja, M. W. Van Den Berg,
O. I. Lebedev, G. Van Tendeloo, R. A. Fischer, J. Am. Chem.
Soc. 2008, 130, 6119.
[
5] S. F. Parker, H. C. Walker, S. K. Callear, E. Grünewald,
T. Petzold, D. Wolf, P. W. Albers, Chem. Sci. 2019, 10, 480.
6] N. Kaur, D. Kishore, J. Chem. Pharm. Res. 2012, 4, 991.
7] P. Das, P. P. Sarmah, B. J. Borah, L. Saikia, D. K. Dutta, New
J. Chem. 2016, 40, 2850.
8] P. P. Sarmah, D. K. Dutta, Green Chem. 2012, 14, 1086.
9] P. K. Saikia, P. P. Sarmah, B. J. Borah, L. Saikia, K. Saikia,
D. K. Dutta, Green Chem. 2016, 18, 2843.
[38] K. Inamoto, K. Nozawa, J. Kadokawa, Y. Kondo, Tetrahedron
2012, 68, 7794.
[39] R. D. Aher, M. H. Gade, R. S. Reddy, A. Sudalai, Indian
J. Chem. 2012, 51A, 1325.
[40] F. Gonella, F. Caccavale, L. D. Bogomolova, F. d'Acapito,
A. Quaranta, J. Appl. Phys. 1998, 83, 1200.
[41] L. Cai, Y. Sun, W. Li, W. Zhang, X. Liu, D. Ding, N. Xu, RSC
Adv. 2015, 5, 98136.
[
[
[
[
[
[
[
10] B. J. Borah, S. J. Borah, K. Saikia, D. K. Dutta, Catal. Sci.
[42] J. B. Lan, L. Chen, X. Q. Yu, J. S. You, R. G. Xie, Chem.
Commun. 2004, 2, 188.
[43] S. K. Das, P. Deka, M. Chetia, R. C. Deka, P. Bharali, U. Bora,
Catal. Lett. 2018, 148, 547.
[44] M. L. Kantam, G. T. Venkanna, C. Sridhar, B. Sreedhar,
B. M. Choudary, J. Org. Chem. 2006, 71, 9522.
Technol. 2014, 4, 4001.
11] B. J. Borah, D. Dutta, P. P. Saikia, N. C. Barua, D. K. Dutta,
Green Chem. 2011, 13, 3453.
12] A. Gogoi, S. J. Chutia, P. K. Gogoi, U. Bora, Appl.
Organometal. Chem. 2014, 28, 839.