Cu-catalyzed N-arylation of imidazole in water
[5] a) R. Gujadhur, D. Venkataraman, T. J. Kintigh, Tetrahedron Lett. 2001,
42, 4791–4793; b) R. K. Gujadhur, C. G. Bates, D. Venkataraman, Org.
Lett. 2001, 3, 4315–4317.
The scope of substrates was then investigated using the optimal
reaction conditions (Table 2). We first studied the N-arylation of 1H-
imidazole with various aryl iodides. In general, most aryl iodides
react with imidazole smoothly to give the desired products with
moderate to excellent yields, such as iodobenzene, 1-ethoxy-4-
iodobenzene, 1-iodo-4-nitrobenzene, 1-chloro-4-iodobenzene
and 4-iodo-1,1′-biphenyl leading to the N-arylated products with
70–99% yields (Table 2, entries 1, 2, 5–7). When 1-(4-iodophenyl)
ethanone is used as the coupling partner, the yield drops to 59%
(Table 2, entry 4). Also we can see that sterically demanding ortho
substituents such as 1-iodo-2-methylbenzene hamper the N-
arylation reaction (Table 2, entry 3). Although aryl bromides, such
as 1-bromo-4-methylbenzene and 1-bromo-4-nitrobenzene, are
less reactive than aryl iodides, 40 and 42% yields are still obtained,
respectively (Table 2, entries 8 and 9). Interestingly, heteroaryl bro-
mides are also coupled with imidazole to afford the desired product
with 85 and 32% yields, respectively (Table 2, entries 10 and 11). To
our delight, aryl iodides react with 1H-benzo[d]imidazole and the
corresponding products with moderate to good yields are achieved
under the optimized reaction conditions. For example,
iodobenzene, 1-iodo-4-methylbenzene and 1-iodo-4-nitrobenzene
afford the corresponding products with 61–77% yields (Table 2,
entries 12–14). When 4-iodo-1,1′-biphenyl as substrate reacts with
1H-benzo[d]imidazole, the arylated product with 46% yield is
obtained (Table 2, entry 15).
[6] M. Yang, F. Liu, J. Org. Chem. 2007, 72, 8969–8971.
[7] a) A. Kiyomori, J.-F. Marcoux, S. L. Buchwald, Tetrahedron Lett. 1999, 40,
2657–2660; b) L. Liu, M. Frohn, N. Xi, C. Dominguez, R. Hungate,
P. J. Reider, J. Org. Chem. 2005, 70, 10135–10138; c) A. A. Kelkar,
N. M. Patil, R. V. Chaudhari, Tetrahedron Lett. 2002, 43, 7143–7146; d)
Y.-H. Liu, C. Chen, L.-M. Yang, Tetrahedron Lett. 2006, 47, 9275–9278.
[8] a) J. C. Antilla, A. Klapars, S. L. Buchwald, J. Am. Chem. Soc. 2002, 124,
11684–11688; b) A. Klapars, X. Huang, S. L. Buchwald, J. Am. Chem.
Soc. 2002, 124, 7421–7428; c) B. Mallesham, B. M. Rajesh, P. R. Reddy,
D. Srinivas, S. Trehan, Org. Lett. 2003, 5, 963–965; d) P.-S. Wang,
C.-K. Liang, M.-K. Leung, Tetrahedron 2005, 61, 2931–2939; e)
E. Alcalde, I. Dinares, S. Rodriguez, C. Garcia de Miguel, Eur. J. Org.
Chem. 2005, 1637–1643; f) P. E. Maligres, S. W. Krska, P. G. Dormer,
J. Org. Chem. 2012, 77, 7646–7651.
[9] F. Y. Kwong, A. Klapars, Org. Lett. 2002, 4, 581–584.
[10] Y.-J. Chen, H.-H. Chen, Org. Lett. 2006, 8, 5609–5612.
[11] D. Jiang, H. Fu, Y. Jiang, Y. Zhao, J. Org. Chem. 2007, 72, 672–674.
[12] F. Y. Kwong, S. L. Buchwald, Org. Lett. 2003, 5, 793–796.
[13] a) A. Shafir, S. L. Buchwald, J. Am. Chem. Soc. 2006, 128, 8742–8743; b)
Z. Xi, F. Liu, Y. Zhou, W. Chen, Tetrahedron 2008, 64, 4254–4259; c)
X. H. Zhu, L. Su, L. Y. Huang, G. Chen, J. L. Wang, H. C. Song,
Y. Q. Wan, Eur. J. Org. Chem. 2009, 635–642.
[14] X. Lv, W. Bao, J. Org. Chem. 2007, 72, 3863–3867.
[15] a) H.-J. Cristau, P. P. Cellier, J.-F. Spindler, M. Taillefer, Chem. Eur. J. 2004,
10, 5607–5622; b) Z. Q. Wu, Z. Q. Jiang, D. Wu, H. F. Xiang, X. G. Zhou,
Eur. J. Org. Chem. 2010, 1854–1857; c) Z. Q. Wu, L. Zhou, Z. Q. Jiang,
D. Wu, Z. K. Li, X. G. Zhou, Eur. J. Org. Chem. 2010, 4971–4975; d)
Y. Wang, Z. Wu, L. X. Wang, Z. K. Li, X. G. Zhou, Chem. Eur. J. 2009, 15,
8971–8974.
[16] a) D. Ma, Q. Cai, H. Zhang, Org. Lett. 2003, 5, 2453–2455; b) D. Ma, Q. Cai,
Synlett 2004, 128–130; c) Q. Cai, W. Zhu, H. Zhang, Y. Zhang, D. Ma,
Synthesis 2005, 496–499; d) H. Zhang, Q. Cai, D. Ma, J. Org. Chem.
2005, 70, 5164–5173; e) X. Lv, Z. Wang, W. Bao, Tetrahedron 2006, 62,
4756–4761.
[17] a) Z. Lu, R. J. Twieg, S. D. Huang, Tetrahedron Lett. 2003, 44, 6289–6292;
b) Z. Lu, R. Twieg, Tetrahedron Lett. 2005, 46, 2997–3001.
[18] H. Rao, H. Fu, Y. Jiang, Y. Zhao, J. Org. Chem. 2005, 70, 8107–8109.
[19] M. Carril, R. SanMartin, E. Domínguez, Chem. Soc. Rev. 2008, 37,
639–647.
[20] For some selected examples, see a) L. Liang, Z. K. Li, X. Zhou, Org. Lett.,
2009, 11, 3294–3297; b) Y. Wang, Z. Wu, L. Wang, Z. Li, X. Zhou, Chem.
Eur. J. 2009, 15, 8971–8974; c) J. Xie, X. Zhu, M. Huang, F. Meng,
W. Chen, Y. Wan, Eur. J. Org., Chem. 2010, 17, 3219–3223; d) X. Li,
D. Yang, Y. Jiang, H. Fu, Green Chem. 2010, 12, 1097–1106; e) Y. Li,
X. Zhu, F. Meng, Y. Wan, Tetrahedron 2011, 67, 5450–5454; f)
K. G. Thakur, D. Ganapathy, G. Sekar, Chem. Commun. 2011, 47,
5076–5078; g) D. Wang, F. Zhang, D. Kuang, J. Yu, J. Li, Green Chem.
2012, 14, 1268–1271; h) Q. Yang, Y. Wang, D. Lin, M. Zhang,
Tetrahedron Lett. 2013, 54, 1994–1997; i) B. Yang, L. Liao, Y. Zeng,
X. Zhu, Y. Wan, Catal. Commun. 2014, 45, 100–103.
Conclusions
We have developed a novel and general catalytic method for
N-arylation of 1H-imidazoles promoted by complex 1 in water.
The system is efficient for the coupling of imidazoles with ArX
(X= I, Br) to give products in moderate to excellent yields. The easy
availability of the catalyst, mild reaction conditions, experimental
simplicity and broad substrate scope are the features of the
catalytic method presented in this paper.
Acknowledgments
We gratefully acknowledge financial support of this work by the Na-
tional Natural Science Foundation of China (nos. 21103114 and
21463022), and Shihezi University Training Programme for Distin-
guished Youth Scholars (no. 2014ZRKXJQ05).
[21] a) S. Matsunaga, M. Shibasaki, Chem. Commun. 2014, 50, 1044–1057; b)
S. Matsunaga, M. Shibasaki, Synthesis 2013, 45, 421–437; c) M. Nath,
P. K. Saini, Dalton Trans. 2011, 40, 7077–7121.
[22] a) F.-T. Wu, P. Liu, X.-W. Ma, J.-W. Xie, B. Dai, Chin. J. Chem. 2013, 24,
893–896; b) Y.-L. Jiao, N. N. Yan, J.-W. Xie, X.-W. Ma, P. Liu, B. Dai, Chin.
J. Chem. 2013, 31, 267–270; c) Y. Liu, Q. Zhang, X.-W. Ma, P. Liu,
J.-W. Xie, B. Dai, Z.-Y. Liu, Int. J. Org. Chem. 2013, 3, 185–189; d) Y. Liu,
W. Liu, Q. Zhang, P. Liu, J.-W. Xie, B. Dai, J. Chem. Res. 2013, 37, 636–637.
References
[1] N. R. Candeias, L. C. Branco, P. M. Gois, C. A. M. Afonso, A. F. Trindade,
Chem. Rev. 2009, 109, 2703–2802.
[2] J. F. Hartwig in Modern Amination Methods (Ed.: A. Ricci), Wiley-VCH,
Weinheim, 2000, pp. 195–262.
[3] a) J. P. Wolfe, S. L. Buchwald, J. Am. Chem. Soc. 1997, 119, 6054–6058; b)
C. Desmarets, R. Schneider, Y. Fort, J. Org. Chem. 2002, 67, 3029–3036;
c) S. Tasler, B. H. Lipshutz, J. Org. Chem. 2003, 68, 1190–1199.
[4] a) F. Monnier, M. Taillefer, Angew. Chem. Int. Ed. 2009, 48,
6954–6971; b) M. G. Boswell, F. G. Yeung, C. Wolf, Synlett
2012, 23, 1240–1244; c) Y.-C. Teo, F.-F. Yong, G. S. Lim,
Tetrahedron Lett. 2011, 52, 7171–7174.
Supporting Information
Additional supporting information may be found in the online ver-
sion of this article at the publisher’s web-site.
Appl. Organometal. Chem. (2015)
Copyright © 2015 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/aoc