3
2.
(a) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127-
its corresponding indole derivatives in moderate yield. The
method was then successfully extended to synthesize 5-chloro
and 5-bromo indoles in 50 and 46% yields respectively, which
can be potentially exploited for further functionalisation of indole
nucleus. For the synthesis of 2-methyl indoles phosphorane 2b
was required. This was synthesized by alkylating 2a with methyl
iodide. Following the same protocol the phosphorane 2b was
reacted with nitroaldehydes 1a-f to fetch all important 2-methyl
indole derivatives in slightly lower yields than the corresponding
unsubstituted indoles. Lower yields of 2-alkyl indoles were
attributed to their higher reactivity. The 2-methyl indoles are
important starting intermediates for preparing pharmaceutically
active compounds (Scheme 5).13
2198; (b) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873-
2920; (c) Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106,
2875-2911; (d) Shiri, M. Chem. Rev. 2012, 112, 3508-3549; (e)
Vicente, R. Org. Biomol. Chem. 2011, 9, 6469-6480; (f) Taber, D.
F.; Tirunahari, P. K. Tetrahedron 2011, 67, 7195-7210. (g) Song,
J. J.; Reeves, J. T.; Fandrick, D. R.; Tan, Z.; Yee, N. K.;
Senanayake, C. H. Arkivoc 2010, 390-449.
3.
4.
Larock, R. C.; Yum, E. K.; Refvik, M. D. J. Org. Chem. 1998,
63, 7652-7662.
(a) Yanada, R.; Obika, S.; Oyama, M.; Takemoto, Y. Org. Lett.
2004, 6, 2825-2828; (b) Ackermann, L.; Kaspar, L. T.; Gschrei, C.
J. Chem. Commun. 2004, 2824-2825; (c) Zeni, G.; Larock, R. C.
Chem. Rev. 2006, 106, 4644-4680; (d) Inman, M.; Carbone, A.;
Moody, C. J. J. Org. Chem. 2012, 77, 1217-1232; (e) Song, W.;
Ackermann, L. Chem. Commun. 2013, 49, 6638-6640.
(a) Cadogan, J. I. G.; Cameron-Wood, M.; Mackie, R. K.; Searle,
R. J. G. J. Chem. Soc. 1965, 4831-4837; (b) R. J. Sundberg, J.
Org. Chem. 1965, 30, 3604-3610; (c) Sundberg, R. J.; Yamazaki,
T. J. Org. Chem. 1967, 32, 290-294; (d) Sundberg, R. J.;
Kotchmar, G. S. J. Org. Chem. 1969, 34, 2285-2288; (d) Cadogan,
J. I. G. Accounts Chem. Res. 1972, 5, 303-310.
5.
6.
7.
8.
9.
Mali, R. S.; Tilve, S. G.; Desai, V. G. J. Chem. Research(s), 2000,
8-9.
Freeman, A. W.; Urvoy, M.; Criswell, M. E. J. Org. Chem. 2005,
70, 5014-5019.
Sanz, R.; Escribano, J.; Pedrosa, M. R.; Aguado, R.; Arnaiz, F. J.
Adv. Synth. Catal. 2007, 349, 713-718.
Huleatt, P. B.; Lau, J.; Chua, S.; Tan, Y. L.; Duong, H. A.; Chai,
C. L. L. Tetrahedron Lett. 2011, 52, 1339-1342.
Scheme 5. Application to bioactive compounds
Conclusions
10. (a) Smitrovich, J. H.; Davies, I. W. Org. Lett. 2004, 6, 533-535;
(b) Davies, I. W.; Smitrovich, J. H.; Sidler, R.; Qu, C.; Gresham,
V.; Bazaral, C. Tetrahedron 2005, 61, 6425-6437; (c) Clawson, R.
W.; Deavers, R. E.; Akhmedov, N. G.; Soederberg, B. C. G.
Tetrahedron 2006, 62, 10829-10834; (d) Soderberg, B. C. G.;
Banini, S. R.; Turner, M. R.; Minter, A. R.; Arrington, A. K.
Synthesis 2008, 903-912; (e) Soederberg, B. C. G.; Hubbard, J.
W.; Rector, S. R.; O'Neil, S. N. Tetrahedron 2005, 61, 3637-3649;
(f) Gorugantula, S. P.; Carrero-Martinez, G. M.; Dantale, S. W.;
Soderberg, B. C. G. Tetrahedron 2010, 66, 1800-1805;
In conclusion a practical metal free synthesis of indole and 2-
methyl indoles in one pot from easily available substituted o-
nitrobenzaldehydes and stable phosphoranes was achieved. The
reactions involved in this one step protocol are Wittig reaction,
reductive cyclisation, hydrolysis and decarboxylation. The
important feature of this methodology is its ease of handling of
substrates, short reaction time and no requirements of inert
atmosphere.
(g) Motohiro, A.; Teruyuki, K.; Yoshihisa, W. Chem.Lett. 1992,
769-772;(h) Crotti, C.; Cenini, S.; Rindone, B.; Tollari, S.;
Demartin, F. Chem. Commun. 1986, 784-786.
Acknowledgments
11. (a) Kadam, H. K.; Parvatkar, P. T.; Tilve, S. G. Synthesis 2012,
44, 1339-1342; (b) Volvoikar, P. S.; Parvatkar, P. T.; Tilve, S. G.,
Eur. J. Org. Chem. 2013, 2172-2178.
We are grateful to the DST (EMR/2016/00091) New Delhi
and Ministry of Education and Science of the Russian Federation
(the Agreement № 02.А03.21.0008) for the financial assistance.
Prajesh S. Volvoikar thanks the CSIR, New Delhi for the Junior
Research Fellowship and Senior Research Fellowship.
12. (a) Bartoli, G.; Palmieri, G.; Bosco, M.; Dalpozzo, R. Tetrahedron
Lett. 1989, 30, 2129-2132; (b) Bartoli, G.; Bosco, M.; Dalpozzo,
R.; Palmieri, G.; Marcantoni, E. J. Chem. Soc., Perkin Trans. 1
1991, 2757-2761;(c) Dalpozzo, R.; Bartoli, G. Curr. Org. Chem.
2005, 9, 163-178; (d) Gao, H.; Xu, Q.-L.; Yousufuddin, M.; Ess,
D. H.; Kurti, L. Angew. Chem., Int. Ed. 2014, 53, 2701-2705; (e)
Nishiyama, Y.; Maema, R.; Olmo, K.; Hirose, M.; Sonoda, N.
Tetrahedron Lett. 1999, 40, 5717-5720; (f) Llona-Minguez, S.;
Desroses, M.; Ghassemian, A.; Jacques, S. A.; Eriksson, L.;
Isacksson, R.; Koolmeister, T.; Stenmark, P.; Scobie, M.;
Helleday, T. Chem. Eur. J. 2015, 21, 7394-7398.
References and notes
1.
(a) Horton, D. A.; Bourne, G. T.; Smythe, M. L., Chem. Rev.
2003, 103 , 893-930; (b) Kochanowska-Karamyan, A. J.; Hamann,
M. T., Chem. Rev. 2010, 110, 4489-4497; (c) Gilchrist, T. L. J.
Chem. Soc., Perkin Trans. 1 2001, 2491-2515; (d) Kaushik, N.
K.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C. H.; Verma, A. K.;
Choi, E. H. Molecules 2013, 18, 6620-6662; (e) Kawasaki, T.;
Higuchi, K. Nat. Prod. Rep. 2005, 22, 761-793; (f) Ishikura, M.;
Abe, T.; Choshi, T.; Hibino, S. Nat. Prod. Rep. 2013, 30, 694-752;
(g) Toyota, M.; Ihara, M. Nat. Prod. Rep. 1998, 15, 327-340; (h)
Cacchi, S.; Fabrizi, G.; Goggiamani, A. Org. Biomol. Chem. 2011,
9, 641-652. (a) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004,
104, 2127-2198; (b) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105,
2873-2920; (c) Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006,
106, 2875-2911; (d) Shiri, M. Chem. Rev. 2012, 112, 3508-3549;
(e) Vicente, R. Org. Biomol. Chem. 2011, 9, 6469-6480;
13. Gong T-J.; Cheng, W-M.; Su, W.; Xiao, B.; Fu, Y., Tetrahedron
Lett. 2014, 1859-1862.
14. General
procedure
for
synthesis
of
indoles
from
nitrobenzaldehyde: In a 50 ml round bottom flask containing
magnetic stir bar was charged with o-nitro benzaldehydes (2
mmol), phosphorane (2.2 mmol), triphenyl phosphine (4.6 mmol)
and diphenyl ether (10 mL) and heated at 260 oC for 1 h. The
reaction massl was then cooled to room temperature and poured
on silica column. Products were isolated by eluting with pet ether
to 3:1 pet ether: ethyl acetate.