10.1002/cctc.201900860
ChemCatChem
FULL PAPER
Protocol for 1,2,3-triazole synthesis (Click chemistry)
A. Espinosa Jalapa, D. Milstein, J. Am. Chem. Soc. 2016, 138, 4298–
4301.
[6]
a) P. Daw, Y. Ben-David, D. Milstein, ACS Catal., 2017, 7, 7456–7460;
b) M. Mastalir, M. Glatz, N. Gorgas, B. Stöger, E. Pittenauer, G.
Allmaier, L. Veiros and K. Kirchner, Chem. - A Eur. J. 2016, 22, 12316–
12320.
In a typical synthesis, a 15 mL tube was charged with a magnetic bar,
Cu-HMOP (10 wt%), phenyl acetylene (1.0 mmol), benzyl chloride (1.10
mmol), sodium azide (1.50 mmol), and triethylamine (0.10 mmol) and
stirred at room temperature for 18 h using water as a solvent. After the
completion, ethylacetate (5.0 mL) was added to the reaction mixture and
the aqueous layer was separated and partitioned again with ethylacetate
(5mL x 2). Then the combined organic layer were dried over Na2SO4 and
evaporated, the resultant crude product was purified using column
chromatography with ethylacetate/hexane as the solvent system.
[7]
[8]
a) N. Deibl, K. Ament, R. Kempe, J. Am. Chem. Soc. 2015, 137,
12804–12807; b) S. Michlik, R. Kempe, Nat. Chem. 2013, 5, 140–144;
c) K. Iida, T. Miura, J. Ando, S. Saito, Org. Lett. 2013, 15, 1436–1439.
a) . Marco- ontelles, E. P rez-Mayoral, A. Samadi, M. do C. Carreiras,
E. Soriano, Chem. Rev., 2009, 109, 2652–2671; b) F. Domínguez-
Fernández, J. López-Sanz, E. Pérez-Mayoral, D. ek, R. M. Mart n-
Aranda, A. . pez-Peinado, . e ka, ChemCatChem, 2009, 1, 241–
243; c) E. Pérez-Mayoral, . e ka, ChemCatChem, 2011, 3, 157–159;
d) C. S. Cho, B. T. Kim, T.-J. Kim, S. C. Shim, Chem. Commun., 2002,
2576–2577; e) R. Martínez, D. J. Ramón, M. Yus, Eur. J. Org. Chem.
2007, 2007, 10, 1599–1605; f) H. Vander Mierde, P. Van Der Voort, D.
De Vos, F. Verpoort, Eur. J. Org. Chem. 2008, 2008, 9, 1625–1631.
a) T. Yan, K. Barta, ChemSusChem. 2016, 9, 2321–2325; b) D. Srimani,
Y. Ben-David, D. Milstein, Chem. Commun. 2013, 49, 6632-6634; c) B.
Pan, B. Liu, E. Yue, Q. Liu, X. Yang, Z. Wang, W. H. Sun, ACS Catal.
2016, 6, 1247–1253.
Leaching and recycling test
To study leaching of any active copper metal into solution, hot filtration
test was performed considering quinoline synthesis as a test reaction. As
described in section 2.3, an identical experiment was performed between
2-aminobenzylalcohol (1 mmol), and arylketones (1.1 mmol) for inital
period of 10 h by maintaining all other reaction parameters identical. The
catalyst was recovered from the reaction system and the filtrate was kept
under the same reaction conditions to further continue for 14 h. The
course of reaction was followed by monitoring conversion and product
formation using gas chromatography (GC). For catalyst recyclability test,
the catalyst recovered from the first reaction run between 2-
aminobenzylalcohol (1 mmol), and arylketones (1.1 mmol) was separated
by centrifugation, washed thoroughly with ethanol and acetone, dried in a
vacuum oven at 100 °C for overnight to remove any occluded organics
on the catalyst surface. The activated catalyst was reused for quinoline
synthesis as a model reaction for another 5 successive cycles under
identical conditions as described above experimental details.
[9]
[10] a) H. Choi, M. P. Doyle, Chem. Commun. 2007, 745-747; b) R.
Yamaguchi, C. Ikeda, Y. Takahashi, K. Fujita, J. Am. Chem. Soc. 2009,
131, 8410-8412; c) S. Chakraborty, W. W. Brennessel, W. D. Jones, J.
Am. Chem. Soc. 2014, 136, 8564-8567; d) E. Zhang, H. W. Tian, S. D.
Xu, X. Xx. Yu, Q. Xu, Org. Lett. 2013, 15, 2704-2707.
[11] a) F. Li, J. Chen, Q. H. Zhang, Y. Wang, Green Chem. 2008, 10, 553-
562; b) K. Kamata, J. Kasai, K. Yamaguchi, N. Mizuno, Org. Lett. 2004,
6, 3577-3580; c) D. V. Jawale, E. Gravel, N. Shah, V. Dauvois, H. Li, I.
N. N. Namboothiri, E. Doris, Chem. Eur. J. 2015, 21, 7039-7042; d) X. J.
Cui, Y. H. Li, S. Bachmann, M. Scalone, A. E. Surkus, K. Junge, C.
Topf, M. Beller, J. Am. Chem. Soc. 2015, 137, 10652-10658; e) K.
Mullick, S. Biswas, A. M. Angeles-Boza, S. L. Suib, Chem. Commun.
2017, 53, 2256-2259.
Acknowledgements
[12] a) J. R. Wang, Y. Fu, B. B. Zhang, X. Cui, L. Liu, Q. X. Guo,
Tetrahedron Lett. 2006, 47, 8293-8297; b) B. Zhu, M. Lazar, B. G.
Trewyn, R. J. Angelici, J. Catal. 2008, 260, 1-6; c) A. Grirrane, A.
Corma, H. Garcia, J. Catal. 2009, 264, 138-144; d) B. Zhu, R. J.
Angelici, Chem. Commun. 2007, 2157-2159; e) H. Yuan, W. J. Yoo, H.
Miyamura, S. Kobayashi, J. Am. Chem. Soc. 2012, 134, 13970-13973;
f) H. Yuan, W. J. Yoo, H. Miyamura, S. Kobayashi, Adv. Synth. Catal.
2012, 354, 2899-2904; g) A. Taketoshi, T. A. Koizumi, T. Kanbara,
Tetrahedron Lett. 2010, 51, 6457-6459; h) H. Huang, J. Huang, Y. M.
Liu, H. Y. He, Y. Cao, K. N. Fan, Green Chem. 2012, 14, 930-934; i) A.
Dhakshinamoorthy, M. Alvaro, H. Garcia, ChemCatChem. 2010, 2,
1438-1443; j) Z. Zhang, F. Wang, M. Wang, S. Xu, H. Chen, C. Zhang,
J. Xu, Green Chem. 2014, 16, 2523-2527; k) X. Lang, H. Ji, C. Chen, W.
Ma and J. Zhao, Angew. Chem. Int. Ed. 2011, 50, 3934-3937.
M. S. thanks Science & Engineering Research Board for their
research support (No. SB/S1/PC-043/2013).
Keywords: Click reaction • Dehydrogenation • Hierarchical
structures • Porous organic polymer • Quinoline synthesis
[1]
[2]
M. Butters, D. Catterick, A. Craig, A. Curzons, D. Dale, A. Gillmore, S.
P. Green, I. Marziano, J.-P. Sherlock, W. White, Chem. Rev. 2006, 106,
3002–3027.
a) A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, R. J. K. Taylor,
Comprehensive Heterocyclic Chemistry III; Elsevier, 2008; b) J. L.
McGuire, Pharmaceuticals: Classes, Therapeutic Agents, Areas of
Application; Wiley-VCH, 2000; c) J. A. Joule, K. Mills, Heterocyclic
Chemistry. In Heterocyclic Chemistry, 2010.
[13] a) H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2001,
40, 2004-2021; b) V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B.
Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596-2599; c) C. W.
Tornoe, C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057-3064.
[14] a) J. McNulty, K. Keskar, Eur. J. Org. Chem. 2012, 2012, 5462-5470; b)
L Zhang, X. Chen, P. Xue, H. H. Y. Sun, I. D. Williams, K. B. Sharpless,
V. V. Fokin, G. C. Jia, J. Am. Chem. Soc. 2005, 127, 15998-15999; c)
M. M. Majreck, S. M. Weinreb, J. Org. Chem. 2006, 71, 8680-8683; d)
S. Ding, G. Jia, J. Sun, Angew. Chem. Int. Ed. 2014, 53, 1877-1880.
[15] a) N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, . Kim, M. O’Keeffe,
O. M. Yaghi, Science 2003, 300, 1127-1129; b) M. G. Schwab, B.
Fassbender, H. W. Spiess, A. Thomas, X. L. Feng, K. Mullen, J. Am.
Chem. Soc. 2009, 131, 7216-7217; c) I. Luz, F. X. Llabres ixamena, A.
Corma, J. Catal. 2010, 276, 6692-6702; d) S. Kaur, V. Bhalla, M.
Kumar, Chem. Commun. 2015, 51, 526-529; e) M. Susec, S. C. Ligon,
[3]
a) R. Grigg, T. R. B. Mitchell, S. Sutthivaiyakit, N. Tongpenyai, J. Chem.
Soc. Chem. Commun. 1981, 611-612; b) Y. Watanabe, Y. Tsuji, Y.
Ohsugi, Teterahedron Lett. 1981, 22, 2667-2670; c) K. Barta, P. C.
Ford, Acc. Chem. Res. 2014, 47, 1503-1512.
[4]
[5]
B. Gnanaprakasam, J. Zhang, D. Milstein, Angew. Chemie Int. Ed.
2010, 49, 1468–1471.
a) B. Saha, S. M. Wahidurrahaman, P. Daw, G. Sengupta, J. K. Bera,
Chem. - A Eur. J. 2014, 20, 6542–6551; b) J. Bain, P. Cho, A.
Voutchkova-Kostal, Green Chem. 2015, 17, 2271–2280; c) S. Wöckel,
P. Plessow, M. Schelwies, M. K. Brinks, F. Rominger, P. Hofmann M.
Limbach, ACS Catal. 2014, 4, 152–161; d) S. Ruch, T. Irrgang, R.
Kempe, Chem. - A Eur. J. 2014, 20, 13279–13285; e) D. Srimani, Y.
Ben-David, D. Milstein, Angew. Chemie Int. Ed. 2013, 52, 4012–4015;
f) A. Mukherjee, A. Nerush, G. Leitus, L. J. W. Shimon, Y. Ben David, N.
This article is protected by copyright. All rights reserved.