A Fluorescent Sensor for Cd2 and Zn2+
+
1
0
a growing field of research. A chemical sensor generally
includes two components, a reporter unit, for example a
fluorophore, and an ionophore, which can be either independent
species or covalently linked in one molecule, and additionally
1
1
a mechanism for communication between them. When the
analytes bind to the recognition center, changes occur in the
optical properties (e.g., enhancement or inhibition of absorption
or fluorescence) of the chemosensor. Fluorophores are particu-
larly attractive optical molecules and have recently found
1
2
applications in self-assembled chemosensors, for signal am-
13
plification by allosteric catalysis, in supramolecular analytical
1
4
chemistry, and as fluorescent and photochromic chemosen-
1
5
sors.
The majority of fluorescent chemosensors for cations are
composed of a cation recognition unit (ionophore) together
with a fluorogenic unit (fluorophore) and are thus described
FIGURE 1. Structures of fluorescent sensors 7 and 8.
1
0b
as fluoroionophores. An effective fluorescence chemosen-
sor must convert the event of cation recognition by the
ionophore into an easily monitored and highly sensitive light
19
and isolation by Gutsche et al. in the 70s, the cyclooligo-
20
meric phenols known as calixarenes have received much
interest as basic molecular platforms for the construction of
1
6
signal from the fluorophore. As fluorogenic units, pyrenes
Py) are one of the most useful tools due to their relatively
21
desired molecular architectures. The chemistry of calix-
(
arenes is well developed and their unique topology offers a
wide range of scaffolds enabling them to encapsulate many
1
7
efficient excimer formation and emission. Host molecules
with more than one pyrenyl group exhibit intramolecular
excimer emission by two different mechanisms. One results
from π-π stacking of the pyrene rings in the free state, which
results in a characteristic decrease of the excimer emission
intensity and a concomitant increase of monomer emission
intensity. The other mechanism is due to the interaction of
an excited pyrene (Py*) unit with a ground state pyrene (Py)
21
different metal ions. More recently, functionalized calix[4]-
arenes have been incorporated into a large variety of
22
fluorescent ion sensors. In particular Broan reported that a
calixarene containing pyrenyl ester groups forms an intramo-
lecular excimer due to strong π-π interaction between two
23
pyrene units. Additionally we have previously incorporated
pyrene reporter molecules onto single calixarenes as the
pyrene-amide and demonstrated that selective fluorescent
1
8
unit.
2
+
2+
The choice of ionophore is crucial for the development of
an effective sensor and many systems have been developed
including a range of macrocycles. Since their characterization
cation sensors for Cu and Pb could be developed based
2
4
+
2+
on platforms fixed in the cone conformation and K /Pb
on-off switchable sensors when a calix[4]crown fixed in
the 1,3-alternate conformation was used. With tricalix[4]arene
1
8b
3
+
systems, featuring three pyrene moieties, Al selectivity has
(10) (a) Chemosensors for Ion and Molecule Recognition; NATO ASI Series;
2
5
Desvergnes, J. P., Czarnik, A. W., Eds.; Kluwer Academic: Dordrecht, The
Netherlands, 1997. (b) de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.;
Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. ReV.
been observed. In addition, incorporation of both pyrene-
amide, as a donor, and rhodamine, as an acceptor, on a
dicalix[4]arene enabled the development of a mercury-
1
997, 97, 1515. (c) Schmidtchen, F. P.; Berger, M. Chem. ReV. 1997, 97, 1609.
2
6
(
d) Gale, P. A. Coord. Chem. ReV. 2000, 199, 181. (e) Fabrizzi, L. Coord. Chem.
induced F o¨ rster resonance energy transfer (FRET) sensor.
ReV. 2000, 205, 1–232. (f) Sspecial issue on Luminescent Sensors: Kuswandi,
In this paper, we report the synthesis and the fluorometric
properties of two pyrenyl appended calix[4]arenes 7 and 8
featuring 1,2,3-triazole linkers (Figure 1). The selective sensing
B. , Ed. J. ILMU DASAR 2000, 1, 18. (g) Bren, V. A. Russ. Chem. ReV. 2001,
7
0, 1017. (h) Gale, P. A. Coord. Chem. ReV. 2001, 213, 79. (i) Valeur, B.
Molecular Fluorescence; Wiley-VCH: Weinheim, Germany, 2002. (j) Diamond,
D.; Nolan, K. Anal. Chem. 2001, 73, 22A–29A. (k) Beer, P. D.; Gale, P. A.
Angew. Chem., Int. Ed. 2001, 40, 486. (l) Ludwig, R.; Dzung, N. T. K. Sensors
2
4
8
2
002, 2, 397. (m) Martinez-Manez, R.; Sancenon, F. Chem. ReV. 2003, 103,
419. (n) Callan, J. F.; de Silva, A. P.; Magri, D. C. Tetrahedron 2005, 61,
551. (o) Dallali, N.; Darabi, A.; Agrawal, Y. K. ReV. Anal. Chem. 2005, 24,
63. (p) Amendola, V.; Fabbrizzi, I.; Forti, F.; Pallavicini, P.; Poggi, A.; Sacchi,
(19) (a) Muthukrishnan, R.; Gutsche, C. D. J. Org. Chem. 1979, 44, 3962.
(b) Gutsche, C. D.; Dhawan, B.; No, K. H.; Muthukrishnan, R. J. Am. Chem.
Soc. 1981, 103, 3782.
(20) (a) Gutsche, C. D. In Calixarenes; The Royal Society of Chemistry:
Cambridge, UK, 1989. (b) Gutsche, C. D. In Calixarenes ReVisited; The Royal
Society of Chemistry: Cambridge, UK, 1998.
(21) (a) Calixarenes: a Versatile Class of Macrocyclic Compounds; B o¨ hmer,
V., Vicens, J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands,
1991. (b) Calixarenes 2001, Asfari, Z., B o¨ hmer, V., Harrowfield, J., Vicens, J.,
Eds.: Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. (c)
Calixarenes 50th AnniVersary: CommemoratiVe Volume; Asfari, Z., Harrowfield,
J., Vicens, J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands,
1994. (d) Calixarenes in the Nanoworld; Harrowfield, J., Vicens, J., Eds.;
Springer: Dordrecht, The Netherlands, 2007.
(22) See the following reviews: (a) Valeur, B.; Leray, I. Coord. Chem. ReV.
2000, 205, 3. (b) Ludwig, R.; Dzung, N. T. K. Sensors 2002, 2, 397. (c) Kim,
S. H.; Kim, H. J.; Yoon, J.; Kim, J. S. In Calixarenes in The Nanoworld;
Harrowfield, J., VicensJ., Eds.; Springer: Dordrecht, The Netherlands, 2007;
Chapter 15. (d) Kim, J. S.; Quang, D. T. Chem. ReV. 2007, 107, 3780.
(23) Broan, C. J. Chem. Commun. 1996, 699.
D.; Tagleitti, A. Coord. Chem. ReV. 2006, 250, 273. (q) Mancin, F.; Rampazzo,
E.; Tecilla, P.; Tonellato, U. Chem. Eur. J. 2006, 12, 1844. (r) Kungwandi, B.;
Nuriman; Verboom, W.; Reinhoudt, D. N. Sensors 2006, 6, 978. (s) Mancin, F.;
Rampazzo, E.; Tecilla, P.; Tonallato, U. Chem. Eur. J. 2006, 12, 1844. (t) Valeur,
B.; Leray, I. Inorg. Chem. Acta 2007, 360, 765.
(
(
(
(
(
(
11) L o¨ hr, H.-G.; V o¨ gtle, F. Acc. Chem. Res. 1985, 18, 65.
12) Yang, X.-F.; Guo, X.-Q.; Zhao, Y.-B. Talanta 2002, 57, 883.
13) Zhu, L.; Anslyn, E. V. Angew. Chem., Int. Ed. 2006, 45, 1190.
14) Anslyn, E. V. J. Org. Chem. 2007, 72, 687.
15) Bell, T. W.; Hext, N. M. Chem. Soc. ReV. 2004, 33, 589.
16) (a) Nohta, H.; Satozono, H.; Koiso, K.; Yoshida, H.; Ishida, J.;
Yamaguchi, M. Anal. Chem. 2000, 72, 4199. (b) Okamoto, A.; Ichiba, T.; Saito,
I. J. Am. Chem. Soc. 2004, 126, 8364.
17) (a) Birks, J. B. Photophysics of Aromatic Molecules; Wiley-Interscience:
London, UK, 1970. (b) Winnik, F. M. Chem. ReV. 1993, 93, 587.
18) (a) Kim, S. K.; Bok, J. H.; Bartsch, R. A.; Lee, J. Y.; Kim, J. S. Org.
(
(
Lett. 2005, 7, 4839. (b) Kim, S. K.; Lee, S. H.; Lee, J. Y.; Lee, J. Y.; Bartsch,
R. A.; Kim, J. S. J. Am. Chem. Soc. 2004, 126, 16499. (c) Kim, H. J.; Hong, J.;
Hong, A.; Ham, S.; Lee, J. H.; Kim, J. S. Org. Lett. 2008, 10, 1963. (d) Choi,
J. K.; Lee, A.; Kim, S.; Ham, S.; No, K.; Kim, J. S. Org. Lett. 2006, 8, 1601.
(24) Kim, H. J.; Bok, J. H.; Vicens, J.; Su, I.-H.; Ko, J.; Kim, J. S.
Tetrahedron Lett. 2005, 46, 8765.
(25) Ben Othman, A.; Lee, J. W.; Huh, Y.-D.; Abidi, R.; Kim, J. S.; Vicens,
J. Tetrahedron 2007, 63, 10793.
(26) Ben Othman, A.; Lee, J. W.; Wu, J.-S.; Kim, J. S.; Abidi, R.; Thu e´ ry,
P.; Strub, J. M.; Van Dorsselaer, A.; Vicens, J. J. Org. Chem. 2007, 72, 7634.
(
e) Choi, J. K.; Kim, S. H.; Yoon, J.; Lee, K. H.; Kim, J. S. J. Org. Chem. 2006,
1, 8015.
7
J. Org. Chem. Vol. 73, No. 21, 2008 8213