Molecular Pharmaceutics
ARTICLE
and isoleucyl prodrugs. The D-Val prodrug had a lower perme-
ability compared to its L-Val counterpart, indicating a significant
stereochemical dependence of the carrier mediated transport
mechanism.
(5) Zurcher, T.; Yates, P. J.; Daly, J.; Sahasrabudhe, A.; Walters, M.;
Dash, L.; Tisdale, M.; McKimm-Breschkin, J. L. Mutations conferring
zanamivir resistance in human influenza virus N2 neuraminidases
compromise virus fitness and are not stably maintained in vitro.
J. Antimicrob. Chemother. 2006, 58 (4), 723–32.
The in situ rat perfusion system has the best correlation with
human oral jejunal mucosal transport for carrier mediated
(6) Cass, L. M.; Efthymiopoulos, C.; Bye, A. Pharmacokinetics of
zanamivir after intravenous, oral, inhaled or intranasal administration to
1
2
compounds. The transport results in this system indicated that
zanamivir, as expected, has a very low permeability while the
L-valyl prodrug was much more permeable. The isoleucyl and D-
valyl prodrugs also showed an increase in permeability though
lower than that of L-valyl prodrug. Thus the carrier mediated
transport and the cellular activation of the amino acid linked
prodrugs of zanamivir have considerable promise in improving
the oral bioavailability of zanamivir.
healthy volunteers. Clin. Pharmacokinet. 1999, 36 (Suppl. 1), 1–11.
(7) (a) Han, H. K.; Amidon, G. L. Targeted prodrug design to
optimize drug delivery. AAPS PharmSci 2000, 2 (1), E6. (b) Han, H.;
de Vrueh, R. L.; Rhie, J. K.; Covitz, K. M.; Smith, P. L.; Lee, C. P.; Oh,
0
D. M.; Sadee, W.; Amidon, G. L. 5 -Amino acid esters of antiviral
nucleosides, acyclovir, and AZT are absorbed by the intestinal PEPT1
peptide transporter. Pharm. Res. 1998, 15 (8), 1154–9.
(8) Han, H. K.; Oh, D. M.; Amidon, G. L. Cellular uptake mechan-
ism of amino acid ester prodrugs in Caco-2/hPEPT1 cells overexpres-
In conclusion, the in vitro and in situ permeation results have
shown that the prodrug strategy of targeting a carrier mediated
transport pathway in the intestinal epithelial cell developed and
described in this work has been very successful in markedly
improving the transport, uptake and membrane permeability of
zanamivir. The increase in transport and uptake of prodrugs
appears to be mediated by the PepT1 transporter, the design
target. However, the role of other transporters in facilitating
membrane transport cannot be ruled out. The in situ intestinal
perfusion results demonstrating an intestinal membrane perme-
ability of the linked valine ester of zanamivir comparable to that
of metoprolol, combined with the significant mucosal cell
hydrolysis (activation), suggest that both good oral absorption
and cellular (first-pass, intestinal) activation may result in good
systemic availability in humans.
sing a human peptide transporter. Pharm. Res. 1998, 15 (9), 1382–6.
(9) Lai, L.; Xu, Z.; Zhou, J.; Lee, K. D.; Amidon, G. L. Molecular basis
of prodrug activation by human valacyclovirase, an alpha-amino acid
ester hydrolase. J. Biol. Chem. 2008, 283 (14), 9318–27.
(10) (a) Vig, B. S.; Lorenzi, P. J.; Mittal, S.; Landowski, C. P.; Shin,
H. C.; Mosberg, H. I.; Hilfinger, J. M.; Amidon, G. L. Amino acid ester
prodrugs of floxuridine: synthesis and effects of structure, stereochem-
istry, and site of esterification on the rate of hydrolysis. Pharm. Res. 2003,
2
0 (9), 1381–8. (b) Oh, D. M.; Han, H. K.; Amidon, G. L. Drug
transport and targeting. Intestinal transport. Pharm. Biotechnol. 1999,
2, 59–88. (c) Landowski, C. P.; Song, X.; Lorenzi, P. L.; Hilfinger, J. M.;
1
Amidon, G. L. Floxuridine amino acid ester prodrugs: enhancing Caco-2
permeability and resistance to glycosidic bond metabolism. Pharm. Res.
2
005, 22 (9), 1510–8. (d) Song, X.; Lorenzi, P. L.; Landowski, C. P.; Vig,
B. S.; Hilfinger, J. M.; Amidon, G. L. Amino acid ester prodrugs of the
anticancer agent gemcitabine: synthesis, bioconversion, metabolic bio-
evasion, and hPEPT1-mediated transport. Mol. Pharmaceutics 2005,
2 (2), 157–67.
’
AUTHOR INFORMATION
(11) Svahn, C. M.; Merenyi, F.; Karlson, L.; Widlund, L.; Gr €a lls, M.
Corresponding Author
Tranexamic acid derivatives with enhanced absorption. J. Med. Chem.
1986, 29 (4), 448–53.
*University of Michigan, College of Pharmacy, Department of
Pharmaceutical Sciences, 428 Church Street, Ann Arbor, MI.
Tel: +1 734 764 2440. Fax: +1 7347636423. E-mail: gla.cmdt@
umich.edu.
(12) Kim, J. S.; Mitchell, S.; Kijek, P.; Tsume, Y.; Hilfinger, J.;
Amidon, G. L. The suitability of an in situ perfusion model for
permeability determinations: utility for BCS class I biowaiver requests.
Mol. Pharmaceutics 2006, 3 (6), 686–94.
(13) Martin, R.; Witte, K. L.; Wong, C.-H. The synthesis and
enzymatic incorporation of sialic acid derivatives for use as tools to
study the structure, activity, and inhibition of glycoproteins and other
glycoconjugates. Bioorg. Med. Chem. 1998, 6 (8), 1283–92.
’
ACKNOWLEDGMENT
This work was supported by NIH RO1 GM 037188.
(14) Chandler, M.; Bamford, M. J.; Conroy, R.; Lamont, B.; Patel, B.;
Patel, V. K.; Steeples, I. P.; Storer, R.; Weir, N. G.; Wright, M.;
Williamson, C. Synthesis of the potent influenza neuraminidase inhi-
bitor 4-guanidino Neu5Ac2en. X-Ray molecular structure of 5-acetami-
do-4-amino-2,6-anhydro-3,4,5-trideoxy-D-erythro-L-gluco-nononic acid.
J. Chem. Soc., Perkin Trans. 1 1995, 1173–80.
(15) Masuda, T.; Yoshida, S.; Arai, M.; Kaneko, S.; Yamashita, M.;
Honda, T. Synthesis and anti-influenza evaluation of polyvalent sialidase
inhibitors bearing 4-guanidino-Neu5Ac2en derivatives. Chem. Pharm.
Bull. 2003, 51 (12), 1386–98.
(16) Nudelman, A.; Gnizi, E.; Katz, Y.; Azulai, R.; Cohen-Ohana, M.;
Zhuk, R.; Sampson, S. R.; Langzam, L.; Fibach, E.; Prus, E.; Pugach, V.;
Rephaeli, A. Prodrugs of butyric acid. Novel derivatives possessing
increased aqueous solubility and potential for treating cancer and blood
diseases. Eur. J. Med. Chem. 2001, 36 (1), 63–74.
(17) Gomes, P.; Santos, M. I.; Trigo, M. J.; Castanheiro, R.; Moreira,
R. Improved Synthesis of Amino Acid and Dipeptide Chloromethyl
Esters Using Bromochloromethane. Synth. Commun. 2003, 33 (10),
1683–93.
’
REFERENCES
(
1) (a) Moscona, A. Neuraminidase inhibitors for influenza. N. Engl.
J. Med. 2005, 353 (13), 1363–73. (b) Masuda, H.; Suzuki, H.; Oshitani,
H.; Saito, R.; Kawasaki, S.; Nishikawa, M.; Satoh, H. Incidence of
amantadine-resistant influenza A viruses in sentinel surveillance sites
and nursing homes in Niigata, Japan. Microbiol. Immunol. 2000, 44 (10),
8
33–9.
2) Monto, A. S. Vaccines and antiviral drugs in pandemic prepared-
ness. Emerging Infect. Dis. 2006, 12 (1), 55–60.
3) Wetherall, N. T.; Trivedi, T.; Zeller, J.; Hodges-Savola, C.;
(
(
McKimm-Breschkin, J. L.; Zambon, M.; Hayden, F. G. Evaluation of
neuraminidase enzyme assays using different substrates to measure
susceptibility of influenza virus clinical isolates to neuraminidase in-
hibitors: report of the neuraminidase inhibitor susceptibility network.
J. Clin. Microbiol. 2003, 41 (2), 742–50.
(
4) Le, Q. M.; Kiso, M.; Someya, K.; Sakai, Y. T.; Nguyen, T. H.;
Nguyen, K. H.; Pham, N. D.; Ngyen, H. H.; Yamada, S.; Muramoto, Y.;
Horimoto, T.; Takada, A.; Goto, H.; Suzuki, T.; Suzuki, Y.; Kawaoka, Y.
Avian flu: isolation of drug-resistant H5N1 virus. Nature 2005,
(18) Hsu, C. P.; Hilfinger, J. M.; Walter, E.; Merkle, H. P.; Roessler,
B. J.; Amidon, G. L. Overexpression of human intestinal oligopeptide
transporter in mammalian cells via adenoviral transduction. Pharm. Res.
1998, 15 (9), 1376–81.
437 (7062), 1108.
2
366
dx.doi.org/10.1021/mp200291x |Mol. Pharmaceutics 2011, 8, 2358–2367