´
Rodondi and R. Psaro, Adv. Synth. Catal., 2005, 347, 1267; (c) P.
Ma¨ki-Arvela, N. Kumar, A. Nasir, T. Salmi and D. Y. Murzin, Ind.
Eng. Chem. Res., 2005, 44, 9376; (d) F. Goettmann, P. Le Floch
and C. Sanchez, Chem. Commun., 2006, 2036; (e) P. Claus, F. Raif,
S. Cavet, S. Demirel-Gu¨len, J. Radnik, M. Schreyer and T. Fa¨ssler,
Catal. Commun., 2006, 7, 618; (f) J. C. Serrano-Ruiz, A. Sepu´lveda-
Escribano, F. Rodr´ıguez-Reinoso and D. Duprez, J. Mol. Catal. A:
Chem., 2007, 268, 227; (g) M. D. Bhor, A. G. Panda, S. R. Jagtap
and B. M. Bhanage, Catal. Lett., 2008, 124, 157; (h) M. Ueno, T.
Suzuki, T. Naito, H. Oyamada and S. Kobayashi, Chem. Commun.,
2008, 1647.
Curr. Org. Chem., 2006, 10, 165; (i) A. E. D´ıaz-Alvarez, P. Crochet,
M. Zablocka, C. Duhayon, V. Cadierno, J. Gimeno and J. P. Majoral,
Adv. Synth. Catal., 2006, 348, 1671; (j) P. Crochet, J. D´ıez, M. A.
Ferna´ndez-Zu´mel and J. Gimeno, Adv. Synth. Catal., 2006, 348,
93; (k) M. Fekete and F. Joo´, Catal. Commun., 2006, 7, 783; (l) T.
Campos-Malpartida, M. Fekete, F. Joo´, A. Katho´, A. Romerosa, M.
Saoud and W. Wojtko´w, J. Organomet. Chem., 2008, 693, 468; (m) B.
Lastra-Barreira, J. D´ıez and P. Crochet, Green Chem., 2009, 11, 1681,
DOI: 10.1039/b914789f.
11 Examples of TH reactions in aqueous media can be found in: (a) F.
Joo´ and A. Be´nyei, J. Organomet. Chem., 1989, 363, C19; (b) D. J.
Darensbourg, F. Joo´, M. Kannisto, A. Katho´ and J. H. Reibenspies,
Organometallics, 1992, 11, 1990; (c) D. J. Darensbourg, F. Joo´, M.
Kannisto, A. Katho´, J. H. Reibenspies and D. J. Daigle, Inorg.
Chem., 1994, 33, 200; (d) H. Y. Rhyoo, R.-J. Park and Y.-K. Chung,
Chem. Commun., 2001, 2064; (e) S. Ogo, T. Abura and Y. Watanabe,
Organometallics, 2002, 21, 2964; (f) F. Joo´, Acc. Chem. Res., 2002,
35, 738; (g) Y. Ma, H. Liu, L. Chen, X. Cui, J. Zhu and J. Deng,
Organometallics, 2003, 22, 2103; (h) P. N. Liu, J. G. Deng, Y. Q. Tu
and S. H. Wang, Chem. Commun., 2004, 2070; (i) X. Wu, X. Li,
F. King and J. Xiao, Angew. Chem., Int. Ed., 2005, 44, 3407; (j) J.
Mao, B. Wan, F. Wu and S. Lu, Tetrahedron Lett., 2005, 46, 7341;
(k) D. S. Matharu, D. J. Morris, G. J. Clarkson and M. Wills, Chem.
Commun., 2006, 3232; (l) X. Wu and J. Xiao, Chem. Commun., 2007,
2449; (m) X. Wu, X. Li, A. Zanotti-Gerosa, A. Pettman, J. Liu, A. J.
Mills and J. Xiao, Chem.–Eur. J., 2008, 14, 2209; (n) C. Wang, X. Wu
and J. Xiao, Chem.–Asian J., 2008, 3, 1750.
21 V. Cadierno, J. Francos and J. Gimeno, Chem.–Eur. J., 2008, 14, 6601.
22 In spite of the insolubility of complex 1 in water, the reduction process
proceeded efficiently. A close examination of the reaction mixture
showed that it was an emulsion rather than a homogeneous solution,
the catalytic reaction probably taking place at the interface.
23 Aldehydes have previously proven to be especially reactive in metal-
catalyzed TH processes under NaO2CH/H2O conditions. See ref.
11.
24 Complexes 1 and 2 are commercialized by TCI Laboratory Chemicals
and Strem Chemicals Inc., respectively.
25 We note that a related Ru-catalyzed isomerization/hydrogenation
tandem process in aqueous media has been reported: P. Csabai and
F. Joo´, Organometallics, 2004, 23, 5640.
26 (a) M. A. Bennett and A. K. Smith, J. Chem. Soc., Dalton Trans.,
1974, 233; (b) M. A. Bennett, T. N. Huang, T. W. Matheson and A. K.
Smith, Inorg. Synth., 1982, 21, 74.
27 J. K. Nicholson and B. L. Shaw, J. Chem. Soc. A, 1966, 807.
28 (a) L. Porri, M. C. Gallazzi, A. Colombo and G. Allegra, Tetrahedron
Lett., 1965, 6, 4187; (b) A. Salzer, A. Bauer, S. Geyser and F. Podewils,
Inorg. Synth., 2004, 34, 59.
29 P. S. Hallman, T. A. Stephenson and G. Wilkinson, Inorg. Synth.,
1970, 12, 237.
30 J. Powell and B. L. Shaw, J. Chem. Soc. A, 1968, 159 .
31 M. O. Albers, T. V. Ashworth, H. E. Oosthuizen and E. Singleton,
Inorg. Synth., 1989, 26, 68.
32 I. P. Evans, A. Spencer and G. Wilkinson, J. Chem. Soc., Dalton
Trans., 1973, 204.
33 (a) M. I. Bruce, C. Hameister, A. G. Swincer and R. C. Wallis, Inorg.
Synth., 1982, 21, 78; (b) M. I. Bruce, C. Hameister, A. G. Swincer
and R. C. Wallis, Inorg. Synth., 1990, 28, 270.
34 L. A. Oro, M. A. Ciriano, M. Campo, C. Foces-Foces and F. H.
Cano, J. Organomet. Chem., 1985, 289, 117.
35 (a) G. Giordano and R. H. Crabtree, Inorg. Synth., 1979, 19, 218;
(b) G. Giordano and R. H. Crabtree, Inorg. Synth., 1990, 28, 88.
36 E. W. Abel, M. A. Bennett and G. Wilkinson, J. Chem. Soc., 1959,
3178.
12 Part of this work has been preliminary communicated: V. Cadierno,
J. Francos, J. Gimeno and N. Nebra, Chem. Commun., 2007, 2536.
13 After the publication of our seminal work, Mizuno and co-
workers have described that supported ruthenium hydroxides
(Ru(OH)x/Al2O3 or Ru(OH)x/TiO2) can also act as efficient het-
erogeneous catalysts for this transformation: (a) J. W. Kim, T. Koike,
M. Kotani, K. Yamaguchi and N. Mizuno, Chem.–Eur. J., 2008, 14,
4104; (b) K. Yamaguchi, T. Koike, J. W. Kim, Y. Ogasawara and
N. Mizuno, Chem.–Eur. J., 2008, 14, 11480.
14 Both individual steps, i.e. the allylic alcohol isomerization and the
TH of the carbonyl intermediate, require the use of a base as co-
catalyst to promote the formation of the active metal-hydride species.
As expected, very low conversions (0–15%) of the substrate were
observed in the absence of base.
15 Further attempts to improve the activity by changing the reaction
conditions failed. In particular, other bases (Li2CO3, Na2CO3,
K2CO3, LiOH·H2O, NaOH, KOH, CsOH·H2O, NaOtBu, KOtBu)
and [Ru] : [base] ratios (from 1 : 1 to 1 : 24) were checked without
success.
3
2
3
3
3
16 Using [RuCl2(h :h :h -C12H18)] 2 and [{RuCl(m-Cl)(h :h -C10H16)}2]
as catalysts TOF values of 429 h-1 and 3000 h-1, respectively, were
attained in the isomerization of 1-octen-3-ol into octan-3-one in
refluxing THF (0.2 mol% Ru; 0.4 mol% of Cs2CO3), while, under
37 A. Van Der Ent and A. L. Onderdelinden, Inorg. Synth., 1973, 14,
92.
38 J. L. Herde, J. C. Lambert and C. V. Senoff, Inorg. Synth., 1974, 15,
18.
39 M. K. Gurjar and P. Yakambram, Tetrahedron Lett., 2001, 42, 3633.
40 S. Laabs, W. Mu¨nch, J. W. Bats and U. Nubbemeyer, Tetrahedron,
2002, 58, 1317.
41 B. Schmidt, J. Org. Chem., 2004, 69, 7672.
42 D. M. Speare, S. M. Fleming, M. N. Beckett, J.-J. Li and T. D. H.
Bugg, Org. Biomol. Chem., 2004, 2, 2942.
6
the same reaction conditions, the Ru(II) dimer [{RuCl(m-Cl)(h -
C6Me6)}2] led to a TOF value of only 125 h-1. See references 10f–g.
17 Remarkably, in the case of the bis(allyl)-ruthenium(IV) derivatives
3
2
3
3
3
[RuCl2(h :h :h -C12H18)] 2 and [{RuCl(m-Cl)(h :h -C10H16)}2] the
graphs obtained showed that the initial isomerization step is finished
after only 5–10 min of heating. This observation is in complete accord
6
with the higher performances of these complexes vs. [{RuCl(m-Cl)(h -
43 N. Marion, R. Gealageas and S. P. Nolan, Org. Lett., 2007, 9, 2653.
44 U. M. Krishna, G. S. C. Srikanth and G. K. Trivedi, Tetrahedron
Lett., 2003, 44, 8227.
C6Me6)}2] in redox isomerization processes (see ref. 16).
18 A. Inoue, K. Kitagawa, H. Shinokubo and K. Oshima, J. Org. Chem.,
2001, 66, 4333.
45 G. Dyker, D. Kadzimirsz and G. Henkel, Tetrahedron Lett., 2003, 44,
19 Coordination of the carbon–carbon double bond is a key step in
the different catalytic cycles proposed for the metal-catalyzed redox
isomerization of allylic alcohols. For mechanistic discussions see
ref. 6.
7905.
46 T. N. Grant and F. G. West, J. Am. Chem. Soc., 2006, 128, 9348.
47 B. D. Stevens, C. J. Bungard and S. G. Nelson, J. Org. Chem., 2006,
71, 6397.
20 See, for example: (a) U. K. Singh, M. N. Sysak and M. A. Vannice,
48 N. S. Nudelman and G. V. Garc´ıa, J. Org. Chem., 2001, 66, 1387.
J. Catal., 2000, 191, 181; (b) F. Zaccheria, N. Ravasio, A. Fusi, M.
2000 | Green Chem., 2009, 11, 1992–2000
This journal is
The Royal Society of Chemistry 2009
©