Please do not adjust margins
Green Chemistry
Page 5 of 7
DOI: 10.1039/C5GC02513C
Journal Name
COMMUNICATION
beta-elimination to form acetaldehyde and a metal hydride, iv) reactivity for esterification reaction. Unusual redox nature of
the coordination of the methoxybenzaldehyde on the metal ethanol in presence of Rh@PS catalyst makes the system an
and it insertion into the metal-hydride bond, v) and finally the unprecedented for acetate ester synthesis comparing the
protonation of the corresponding metal-alkoxide and the existing advanced and traditional methods.
release of the p-OMebenzylalcohol 1a. The coupling reaction
ACKNOWLEDGMENT
proceeds through the in situ formation of acetaldehyde 2t as
an intermediate, which was detected by infrared spectral
analysis (Scheme 4c and supporting information). Finally,
treatment of acetaldehyde 2t with benzyl alcohol 1a leads to
the formation of desired ester 2a confirming the involvement
of hemiacetal generated from acetaldehyde solely (Scheme
4d).
We are grateful to the Director of CSIR-IHBT for providing the
necessary facilities during the course of this work. The authors
thank CSIR, New Delhi for financial support as part of the XIIth
Five Year Plan programme under title ORIGIN (CSC-0108). We
also thank AIRF, JNU-New Delhi, for the TEM and SAED
analysis, SAIF, IIT Bombay for ICP-AES analysis. NRG, SS, DB,
VT, RB and CBR thank UGC and CSIR, New Delhi for awarding
fellowships. CSIR-IHBT communication no. 3886.
The recyclability experiment of Rh@PS was done on p-OMe
benzyl alcohol. After completion, the reaction mixture was
filtered off through a cotton bed, washed with water and
acetone properly, dried over rotary evaporator. Finally, the
Notes and references
Table 4 Recyclability experiment of Rh@PS for oxidative esterification
1
J. Otera, Esterification: methods, reactions, and applications,
Wiley-VCH, Weinheim, 2003.
V. Rojas, Int. J. Food. Microbiol, 2001, 70, 283.
No. of cycles 1st cycle
2nd cycle 3rd cycle
4th cycle
72
6th cycle
71
5th cycle
71
2
3
J. D’Auria, F. Chen and E. Pichersky, Plant Physiol, 2002, 130
466.
,
75
73
73
Yield (%)
4
C. H. Kuo, S. H. Chiang, H. Y. Ju, Y. M. Chen, M. Y. Liao, Y. C.
Liu and C. J. Shieh, Sci Food Agric, 2012, 92, 2141.
Tischtschenko, Chemisches Zentralblatt, 1906, 77, 1309.
G. Guillena, D. J. Ramon and M. Yus, Angew. Chem. 2007,
119, 2410; Angew. Chem. Int. Ed. 2007, 46, 2358.
( a) Q. Xiao, Z. Liu, A. Bo, S. Zavahir, S. Sarina, S. Bottle, J. D.
Riches and H. Zhu, J. Am. Chem. Soc, 2015, 137, 1956; (b) C.
Liu, J. Wang, L. Meng, Y. Deng, Y. Li and A. Lei, Angew. Chem.
Int. Ed, 2011, 50, 5144; (c) N. A. Owston, A. J. Parker, J. M. J.
Williams, Chem.Commun, 2008, 624; (d) X. F. Bai, F. Ye, L. S.
Zheng, G. Q. Lai, C. G. Xia and L. W. Xu, Chem. Comum, 2012,
48, 8592.
recovered dried catalyst was repeatedly used for the same
reaction. The catalyst retained its activity upto six cycles of
reaction with negligible metal leaching.
5
6
7
During the recyclability experiment, Inductively coupled
plasma atomic absorption spectra (ICP-AES) study of the
CHO
Rh@PS, KOtBu
1,4-dioxane, 120 o
5 h
OH
a.
C
H3CO
H3CO
1t: 88%
1a
CHO
CH3CH2OH
8
9
M. Nielsen, H. Junge, A. Kammer and M. Beller, Angew.
Chem. Int. Ed, 2012, 51, 5711.
OH
Rh@PS, KOtBu
1,4-dioxane, 120 o
15h
b.
C
H3CO
H3CO
(a) K. Inui, T. Kurabayashi, S. Sato and N. Ichikawa, J. Mol.
Catal. A: Chem, 2004, 216, 147; (b) P. C. Zonetti, J. Celnik, S.
Letichevsky, A. B. Gaspar and L. G. Appel, J. Mol. Catal. 2011,
334, 29; (c) L. Wang, K. Eguchi, H. Arai and T. Seiyama,
Applied Catalysis, 1987, 33, 107.
1t
1a: 79%
Rh@PS, KOtBu
1,4-dioxane, 120 o
c.
CH3CH2OH
CH3CHO
C
2t
1u
55h
O
Rh@PS, KOtBu
1,4-dioxane, 120 o
44h
O
CH3
d.
1a
+
CH3CHO
10 (a) R. Ray, R. D. Jana, M. Bhadra, D. Maiti and G. K. Lahiri,
Chem. Eur. J. 2014, 20, 15618; (b) S. Gowrisankar, H.
Neumann, M. Beller, Angew. Chem. Int. Ed, 2011, 50, 5139;
(c) R. V. Jagadeesh, H. Junge, M. –M. Pohl, J. Radnik, A.
Brückner and M. Beller, J. Am. Chem. Soc. 2013, 135, 10776.
11 J. M. Hoover, B. L. Ryland and S. S. Stahl, J. Am. Chem. Soc.
2013, 135, 2357.
12 (a) D. S. Muggli, J. T. McCue and J. L. Falconer, Journal of
Catalysis, 1998, 173, 470; (b) H. Jin, T. Xiong, Y. Li, X. Xu, M. Li
and Y. Wang, Chem.Commun, 2014, 50, 12637; (c) Z. Huang,
H. Zhou, C. Li, F. Zeng, C. Fua, and Y. Kuang, J. Mater. Chem,
2012, 22, 1781.
C
H3CO
2t
2a: 65%
Scheme 4. Control experiments to prove the redox nature of ethanol and
understanding the reaction mechanism
reaction mixture was analyzed to determine the amount of Rh-
metal leached from the solid surface (Supporting information).
The result of the test showed that only 0.45 ppm of Rh-metal
was leached after six runs of the reaction.
13 N. R. Guha, D. Bhattacherjee and P. Das, Catal. Sci. Technol.
2015,
14 (a) A. K. Shil, S. Kumar, C. Bal Reddy, V. Thakur, S. Dadwal
and P. Das, Org. Lett, 2015, doi:
5, 2575.
Conclusions
In summary,
a
highly efficient nano-impregnated
doi: 10.1021/acs.orglett.5b02701; (b) A. K. Shil and P. Das,
Green Chem, 2013, 15, 3421; (c) A. K. Shil, S. Kumar, S.
Sharma, A. Chaudhary and P. Das, RSC Adv, 2015, 5, 11506.
heterogeneous Rh(0) catalysed cross-dehydrogenating
coupling of ethanol with aryl/ alkyl alcohols or aldehydes
under aerobic conditions has been investigated for the
synthesis of acetate esters in a one pot consecutive approach.
Vast range of aryl/alkyl alcohols or aldehydes has been
targeted to prove in situ redox behaviour of ethanol and its
15 N. R. Guha, C. B. Reddy, N. Aggarwal, D. Sharma, A. K. Shil,
Bandna and P. Das, Adv. Synth. Catal, 2012, 354, 2911.
16 S. Agarwall and J. N. Ganguli, J. Mol. Catal. A: Chem, 2013,
372, 44.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins