Chiral Ruthenium(ii) Catalysts
425 432
(CDCl3): d = 16.89 (d, J(C,P) = 25.7 Hz, Me), 69.90 (s, CHPh), 78.69 (s,
CH2), 123.46 (s, C3,5 of C5H3N), 127.33, 128.04, 128.65 (s, Ph), 132.01 (s,
C4 of C5H3N), 139.26 (s, Cipso of Ph), 148.21 (s, C2,6 of C5H3N), 167.47 (s,
C=N).
ganic Synthesis, Vol. 2 (Eds.: M. Beller, C. Bolm), Wiley-VCH,
Weinheim, 1998, p. 97.
[4]a) A. Pfaltz, Acta Chem. Scand. Ser. B 1996, 50, 189 194; b) B.
Trost, D. L. Van Vranken, Chem. Rev. 1996, 96, 395 422; c) D. J.
Ager, I. Prakash, D. R. Schaad, Chem. Rev. 1996, 96, 835 875;
d) A. K. Ghosh, P. Mathivanan, J. Cappiello, Tetrahedron 1998, 54,
Complex 7a: Yield 72% (0.085 g); elemental analysis (%): calcd for
C26H28Cl2N3O5PRu: C 46.93, H 4.24, N 6.31; found: C 46.91, H 4.40, N
1
6.12; 31P{1H} NMR (CDCl3): d = 146.05 (s); H NMR (CDCl3): d = 3.12
1
45.
(d, 9H, 3J(H,P) = 10.2 Hz, Me), 4.55 (m, 2H, CHPh), 5.17 (m, 4H,
[5]For recent reviews see: a) R. Noyori, S. Hashiguchi, Acc. Chem. Res.
1997, 30, 97 102; b) M. J. Palmer, M. Wills, Tetrahedron: Asymme-
try 1999, 10, 2045 2061; c) R. Noyori, M. Yamakawa, S. Hashiguchi,
J. Org. Chem. 2001, 66, 7931 7944; d) K. Everaere, A. Mortreux, J.-
F. Carpentier, Adv. Synth. Catal. 2003, 345, 67 77; e) D. Carmona,
M. P. Lamata, L. A. Oro, Eur. J. Inorg. Chem. 2002, 2239 2251.
[6]a) S. Hashiguchi, A. Fujii, J. Takehara, T. Ikariya, R. Noyori, J. Am.
Chem. Soc. 1995, 117, 7562 7563; b) A. Fujii, S. Hashiguchi, N. Ue-
matsu, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 1996, 118, 2521
2522; c) K. Matsumura, S. Hashiguchi, T. Ikariya, R. Noyori, J. Am.
Chem. Soc. 1997, 119, 8738 8739; d) K.-J. Haack, S. Hashiguchi, A.
Fujii, T. Ikariya, R. Noyori, Angew. Chem. 1997, 109, 297 300;
Angew. Chem. Int. Ed. Engl. 1997, 36, 285 288; e) K. P¸ntener, L.
Schwink, P. Knochel, Tetrahedron Lett. 1996, 37, 8165 8168;
f) water-soluble ruthenium(ii) catalysts containing (S)-proline amide
ligands have also given excellent performances: H. Y. Rhyoo, H.-J.
Park, Y. K. Chung, Chem. Commun. 2001, 2064 2065.
[7]a) K. Murata, T. Ikariya, R. Noyori, J. Org. Chem. 1999, 64, 2186
2187; b) K. Mashima, T. Abe, K. Tani, Chem. Lett. 1998, 1199 1200;
c) K. Mashima, T. Abe, K. Tani, Chem. Lett. 1998, 1201 1202.
[8]a) I. Ojima in Comprehensive Asymmetric Catalysis (Eds.: E. N. Ja-
cobsen, A. Pfaltz, H. Yamamoto), Springer, Heidelberg, 1999; b) I.
Ojima, Catalytic Asymmetric Synthesis, 2nd ed., VCH, Weinheim,
2000; c) S. E. Denmark, E. N. Jacobsen (Eds.), Acc. Chem. Res.
2000, 33(6), special issue on Catalytic Asymmetric Synthesis.
CH2), 7.25 7.31 (m, 10H, Ph), 7.90 (m, 3H, C5H3N); 13C{1H} NMR
2
(CDCl3): d = 51.39 (d, J(C,P) = 5.6 Hz, Me), 70.39 (s, CHPh), 79.24 (s,
CH2), 123.08 (s, C3,5 of C5H3N), 127.42, 127.74, 128.39 (s, CH of Ph),
135.83 (s, C4 of C5H3N), 139.45 (s, Cipso of Ph), 148.17 (s, C2,6 of C5H3N),
166.32 (s, C=N).
Synthesis of cis complexes 1band 6b : A solution of trans-[RuCl2(h2-
C2H4){k3-N,N,N-(R,R)-Ph-pybox}](0.150 g, 0.263 mmol) and an excess of
phosphine (0.789 mmol) in methanol (15 mL) was heated at 658C for 5 h.
The solvent was then concentrated to ca. 3 mL and the residue transfer-
red to a silica gel chromatography column. Elution with a mixture of di-
chloromethane/methanol (50:1) gave a red band from which the corre-
sponding complex was isolated by solvent removal.
Complex 1b: Yield 70% (0.295 g); elemental analysis (%): calcd for
C41H34Cl2N3O5PRu¥0.5CH2Cl2: C 58.91, H 4.17, N 4.97; found: C 59.27, H
1
4.34, N 5.35; 31P{1H} NMR (CDCl3): d = 39.03 (s); H NMR (CDCl3): d
= 4.30 4.63 (m, 4H, CH2), 5.03 and 5.50 (m, 1H each, CHPh), 6.91 7.64
(m, 28H, Ph and C5H3N); 13C{1H} NMR (CDCl3): d
= 67.90, 68.30,
78.18, 81.13 (s, CH2 and CHPh), 124.44, 124.54, 127.62 128.91, 130.88,
131.92, 132.06, 132.35, 132.48, 133.03, 136.62, 139.04 (s, Ph, and CH of
C5H3N), 151.79, 152.15 (s, C2,6 of C5H3N), 167.70, 169.44 (s, C=N).
Complex 6b: Yield 81% (0.148 g); elemental analysis (%): calcd for
C41H34Cl2N3O5PRu¥0.5CH2Cl2: C 52.46, H 5.55, N 5.65; found: C 53.12,
1
H 5.89, N 5.74; 31P{1H} NMR (CDCl3): d = 38.83 (s); H NMR (CDCl3):
d = 0.69 0.76 (br, 6H) and 1.06 1.40 (br, 12H) (Me), 1.90 (m, 1H) and
2.12 (m, 2H) (CHMe2), 4.48 (m, 1H), 4.97 (m, 1H), 5.19 (m, 3H) and
5.42 (m, 1H) (CH2 and CHPh), 7.22 7.29 (m, 7H) and 7.56 7.70 (m, 6H)
(Ph and C5H3N); 13C{1H} NMR (CDCl3): d = 19.04 and 20.17 (s, Me),
28.30 (d, J(C,P) = 19.7 Hz, PCH), 67.49 and 69.75 (s, CHPh), 78.46 and
79.63 (s, CH2), 124.90 and 125.11 (s, C3,5 of C5H3N), 128.03 129.63 (s, Ph,
and C4 of C5H3N), 137.18 and 139.11 (s, Cipso of Ph), 154.51 and 155.28 (s,
C2,6 of C5H3N), 168.65 and 169.37 (s, C=N).
[9]L. Schwink, T. Ireland, K. P¸ntener, P. Knochel, Tetrahedron: Asym-
metry 1998, 9, 1143 1163.
[10]a) Y. Jiang, Q. Jiang, X. Zhang, J. Am. Chem. Soc. 1998, 120, 3817
3818; b) M. GÛmez, S. Jansat, G. Muller, M. C. Bonnet, J. A. J. Breu-
zard, M. Lemaire, J. Organomet. Chem. 2002, 659, 186 195.
[11]P. Krasik, H. Alper, Tetrahedron 1994, 50, 4347 4354.
[12]a) F. Touchard, P. Gamez, F. Fache, M. Lemaire, Tetrahedron Lett.
1997, 38, 2275 2278; b) F. Touchard, F. Fache, M. Lemaire, Tetrahe-
dron: Asymmetry 1997, 8, 3319 3326.
[13]A series of ruthenium complexes containing tridentate N,P,N ligands
have also been found to be active in asymmetric transfer hydrogena-
tion: a) Q. Jiang, D. Van Plew, S. Murtuza, X. Zhang, Tetrahedron
Lett. 1996, 37, 797 800; b) Y. Jiang, Q. Jiang, G. Zhu, X. Zhang,
Tetrahedron Lett. 1997, 38, 215 218; c) Y. Jiang, Q. Jiang, G. Zhu,
X. Zhang, Tetrahedron Lett. 1997, 38, 6565 6568.
General procedure for hydrogen transfer reactions: The ketone (5 mmol)
and the catalyst (0.01 mmol) were placed in a three-bottomed Schlenck
flask under a dry nitrogen atmosphere and 2-propanol (50 mL) was
added. The solution was heated at 828C and the corresponding amount
of base from a 0.080m solution in 2-propanol was added after 15 min
(unless otherwise specified). The reaction was monitored by gas chroma-
tography. The corresponding alcohol and acetone were the only products
detected in all cases.
[14]For a review see ref. [4d;] for recent catalytic applications of pybox
complexes, see: a) K. Nomura, S. Warit, Y. Imanishi, Macromole-
cules 1999, 32, 4732 4734; b) D. A. Evans, M. C. Kozlowski, J. A.
Murry, C. S. Burgey, K. R. Campos, B. T. Connell, R. J. Staples, J.
Am. Chem. Soc. 1999, 121, 669 685; c) D. A. Evans, C. S. Burgey,
M. C. Kozlowski, S. W. Tregay, J. Am. Chem. Soc. 1999, 121, 686
699; d) D. A. Evans, D. M. Barnes, J. S. Johnson, T. Lectka, P. von
Matt, S. J. Miller, J. A. Murry, R. D. Norcross, E. A. Shaughnessy,
K. R. Campos, J. Am. Chem. Soc. 1999, 121, 7582 7594; e) S. E.
Schaus, E. N. Jacobsen, Org. Lett. 2000, 2, 1001 1004; f) T. P. Yoon,
D. W. C. MacMillan, J. Am. Chem. Soc. 2001, 123, 2911 2912;
g) D. A. Evans, Z. K. Sweeney, T. Rovis, J. S. Tedrow, J. Am. Chem.
Soc. 2001, 123, 12095 12096; h) S. Iwasa, F. Takezawa, Y. Tuchiya,
H. Nishiyama, Chem. Commun. 2001, 59 60; i) C.-X. Zhao, M. O.
Duffey, S. J. Taylor, J. P. Morken, Org. Lett. 2001, 3, 1829 1831;
j) M. A. Esteruelas, A. M. LÛpez, L. Mÿndez, M. Olivµn, E. OÊate,
New J. Chem. 2002, 26, 1542 1544; k) C. Wei, C.-J. Li, J. Am.
Chem. Soc. 2002, 124, 5638 5639; l) H. Suga, K. Inoue, S. Inoue, A.
Kakehi, J. Am. Chem. Soc. 2002, 124, 14836 14837; m) S. Iwasa, S.
Tsushima, T. Shimada, H. Nishiyama, Tetrahedron 2002, 58, 227
232; n) S. Iwasa, H. Maeda, K. Nishiyama, S. Tsushima, Y. Tsuka-
moto, H. Nishiyama, Tetrahedron 2002, 58, 8281 8287; o) S. Iwasa,
S. Tsushima, K. Nishiyama, Y. Tsuchiya, F. Takezawa, H. Nishiyama,
Tetrahedron: Asymmetry 2003, 14, 855 865.
Acknowledgement
This work was supported by the FICYT (project PR-01-GE-4) and
DGICYT (project FEDER 1FD97-0565).
[1]a) A. Togni, L. M. Venanzi, Angew. Chem. 1994, 106, 517 547;
Angew. Chem. Int. Ed. Engl. 1994, 33, 497 526; b) F. Fache, E.
Schulz, M. L. Tommasino, M. Lemaire, Chem. Rev. 2000, 100, 2159
2231.
[2]For recent reviews on the chemistry of complexes containing phos-
phorus nitrogen ligands, see: a) G. Helmchen, A. Pfaltz, Acc. Chem.
Res. 2000, 33, 336 345; b) M. GÛmez, G. Muller, M. Rocamora,
Coord. Chem. Rev. 1999, 193 195, 769 835; c) P. Espinet, K. Sou-
lantica, Coord. Chem. Rev. 1999, 193 195, 499 556; d) P. Braun-
stein, F. Naud, Angew. Chem. 2001, 113, 702 722; Angew. Chem.
Int. Ed. 2001, 40, 680 699.
[3]a) G. Zassinovich, G. Mestroni, S. Gladiali, Chem. Rev. 1992, 92,
1051 1069; b) S. Gladiali, G. Mestroni in Transition Metal for Or-
431
Chem. Eur. J. 2004, 10, 425 432
¹ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim