Journal of the American Chemical Society
Page 4 of 6
A.; Ghadiri, M. R. J. Am. Chem. Soc. 1996, 118, 43–50.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
The results described herein demonstrate that the lateral
incorporation of oligoether side groups into a short peptide
backbone provides an efficient strategy to allow the short peptides
to undergo conformational switching from random coils to α-
helices (Figure 1). The switching feature of the peptide
conformation is attributed to reversible shielding of the peptide
backbone from water environment by the oligoether dendron side
groups. Furthermore, the switchable α-helical peptides self-
assemble into reversible membrane structures in which the rod-
like α-helices are aligned parallel to each other. Peptide 2 based
on two oligoether dendrons forms discrete disks while peptide 3
based on three dendrons hollow vesicles. The main driving force
responsible for the formation of the switchable peptide
nanostructures is the reversible stabilization of the α-helical
conformation. Importantly, the hollow vesicles formed from
peptide 3 can spontaneously capture a racemic mixture through
the self-formation of membrane walls upon heating and
enantioselectively release the guest molecules through preferential
diffusion across the vesicular walls. Considering that most of the
(3) Matsuura, K.; Murasato, K.; Kimizuka, N. J. Am. Chem. Soc. 2005,
1
27, 10148-10149 .
(4) (a) Rufo, C. M.; Moroz, Y. S.; Moroz, O. V.; Stöhr, J.; Smith, T. A.;
3
2
1892-1894
(6) Lim, Y.-B.; Moon, K.-S.; Lee, M. Angew. Chem. Int. Ed. 2009, 48,
1
601-1605.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(7) Jiang, T.; Xu, C.; Liu, Y.; Liu, Z.; Wall, J. S.; Zuo, X.; Lian, T.;
Salaita, K.; Ni, C.; Pochan, D.; Conticello, V. P. J. Am. Chem. Soc. 2014,
(
1, 4736-4754. (c) Lim, Y.-b.; Lee, M.; J. Mater. Chem. 2011, 21, 11680-
11685. (d) Kim, S.; Kim, J. H.; Lee, J. S.; Park, C. B. Small. 2015, 11,
4
3
4
623-3640. (e) Lim, Y.-B.; Lee, E.; Lee, M. Angew. Chem. Int. Ed. 2007,
6. 3475-3478. (f) Lim, Y.-b.; Lee, E.; Yoon, Y.-R.; Lee, M. Angew.
2
7-
membrane nanostructures are far from controlled encapsulation,
2
9
the notable feature of the peptide membranes is their ability to
(10) (a) Brown, S. P.; Smith, A. B. J. Am. Chem. Soc. 2015, 137, 4034-
control the capture of racemic molecules through assembly-
disassembly switching and enantioselective release the captured
4
037. (b) Blanco-Lomas, M.; Samanta, S.; Campos, P. J.; Woolley, G. A.;
Sampedro, D. J. Am. Chem. Soc. 2012, 134, 6960-6963. (c) Spokoyny, A.
M.; Zou, Y.; Ling, J. J.; Yu, H.; Lin, Y.-S.; Pentelute, B. L. J. Am. Chem.
molecules. Such
a unique peptide assembly will offer
opportunities to explore biomedical applications for the controlled
capture and release of proteins, genes, and drugs.
(
65.
12) Fremaux, J.; Mauran, L.; Pulka-Ziach, K.; Kauffmann, B.; Odaert,
B.; Guichard, G. Angew. Chem. Int. Ed. Engl. 2015, 54, 9816-9820.
13) White, S. J.; Johnson, S. D.; Sellick, M. A.; Bronowska, A.; Stock-
ley, P. G.; Wälti, C. Angew. Chem. Int. Ed. Engl. 2015, 54, 974-978.
14) Sim, S.; Kim, Y.; Kim, T.; Lim, S.; Lee, M. J. Am. Chem. Soc.
4
(
ASSOCIATED CONTENT
Supporting Information
(
(
Experimental procedures, synthesis of peptides, MALDI-TOF
data, HPLC data, XRD data, NMR data, and TEM image. This
2012, 134, 20270-20272.
(15) Azzarito, V.; Long, K.; Murphy, N. S.; Wilson, A. J. Nat. Chem.
2013, 5, 161-173.
(16) (a) Cerpa, R.; Cohen, F. E.; Kuntz I. D. Folding & Design 1996, 1,
9
1-101. (b) Kim, W.; Thevenot, J.; Ibarboure, E.; Lecommandoux, S.;
Chaikof, E. L. Angew. Chem. Int. Ed. 2010, 49, 4257-4260.
AUTHOR INFORMATION
(17) (a) Gosser, Y.; Hermann, Y.; Majumdar, A.; Hu, W.; Frederick, R.;
Jiang, F.; Xu, W.; Patel, D. J. Nat. Struc. Biol. 2001, 8, 146-150. (b)
Zimenkov, Y.; Dublin, S. N.; Ni, R.; Tu, R. S.; Breedveld, V.; Apkarian,
R. P.; Conticello, V. P. J. Am. Chem. Soc. 2006, 128, 6770-6771.
(18) (a) Kim, Y.; Kang, J.; Shen, B.; Wang, Y.; He, Y.; Lee, M. Nat.
Commun. 2015, 6, 8650. (b) Haung, Z.; Lee, H.; Kang, S.-K.; Nam, J.-M.;
Lee, M. Nat. Commun. 2011, 2, 459.
Notes
The authors declare no competing financial interests.
(
19) Hamed, E.; Xu, T.; Keten, S. Biomacromolecules 2013, 14, 4053-
060.
(20) Lee, E.; Kim, J.-K.; Lee, M. Angew. Chem. Int. Ed. 2009, 48,
657-3660.
21) (a) Marqusee, S.; Robbins, V. H.; Baldwin, R. L. Proc. Natl. Acad.
4
3
ACKNOWLEDGMENT
This work was supported by 1000 Program, NSFC (Grant
51473062 and Grant 21450110416).
(
Sci. U. S. A. 1989, 86, 5286-5290. (b) Pace, C. N.; Scholtz, J. M. Biophys.
J. 1998, 75, 422-427.
(22) Aili, D.; Enander, K.; Rydberg, J.; Nesterenko, I.; Björefors, F.;
Baltzer, L.; Liedberg, B. J. Am. Chem. Soc. 2008, 130, 5780-5788.
REFERENCES
(
23) Guzmán, D. L.; Randall, A.; Baldi, P.; Guan, Z. Proc. Natl. Acad.
Sci. U. S. A. 2010, 107, 1989-1994.
24) Kushner, A.M.; Guan, Z. Angew. Chem. Int. Ed. 2011, 50, 9026-
9057.
(1) (a) Knowles, T. P. J.; Oppenheim, T. W.; Buell, A. K.; Chirgadze,
D. Y.; Welland, M. E. Nat. Nanotechnol. 2010, 5, 204-207. (b) Fleming,
S.; Ulijn, R. V.; Chem. Soc. Rev. 2014, 43, 8150-8177. (c) Chambron, J.-
C.; Meyer, M. Chem. Soc. Rev. 2009, 38, 1663-1673. (d) Boekhoven, J.;
Stupp, S. I. Adv. Mater. 2014, 26, 1642-1659. (e) Shao, H.; Lockman, J.
W.; Parquette, J. R. J. Am. Chem. Soc. 2007, 129, 1884-1885. (f) Marine, J.
E.; Song, S.; Liang, X.; Watson, M. D.; Rudick, J. G. Chem. Commun.
(
(25) Hong, D.-J.; Lee, E.; Jeong, H.; Lee, J.-K.; Zin, W.-C.; Nguyen, T.
D.; Glotzer, S. C.; Lee, M. Angew. Chem. Int. Ed. Engl. 2009, 48, 1664-
1
668.
(26) (a) Castelletto, V.; Hamley, I. W.; Reza, M.; Ruokolainen, J. Na-
2
015, 51, 14314-14317. (g) Dehsorkhi, A.; Castelletto, V.; Hamley, I. W.
noscale 2015, 7, 171-178. (b) Przybyla, D. E.; Chmielewski, J. J. Am.
Chem. Soc. 2010, 132, 7866-7867.
J. Pept. Sc. 2014, 20, 453-467. (h) Vauthey, S.; Santoso, S.; Gong, H.;
Watson, N.; Zhang, S. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 5355-5360.
(i) Fletcher, J. M.; Harniman, R. L.; Barnes, F. R. H.; Boyle, A. L.; Col-
lins, A.; Mantell, J.; Sharp, T. H.; Antognozzi, M.; Booth, P. J.; Linden,
N.; Miles, M. J.; Sessions, R. B.; Verkade, P.; Woolfson, D. N. Science
(
Chem. 2014, 6, 429-434. (c) Weng, X.; Baez, J. E.; Khiterer, M.; Hoe, M.
2
013, 340, 595-599.
1
ACS Paragon Plus Environment