ACS Catalysis
Page 6 of 8
(4) For reviews on Meerwein-Ponndorf-Verley reductions and
krishan, R.; Do, D. M.; Jaenicke, S.; Sasson, Y.; Chuah, G.-K.
Potassium Phosphate as a Solid Base Catalyst for the Cata-
lytic Transfer Hydrogenation of Aldehydes and Ketones.
ACS Catal. 2011, 1, 1631−1636; (d) Boit, T. B.; Mehta, M.
M.; Garg, N. K. Base-Mediated Meerwein–Ponndorf–Verley
Reduction of Aromatic and Heterocyclic Ketones. Org. Lett.
2019, 21, 6447-6451.
Oppenauer oxidations, see: (a) Wild, A. L. Reduction with
Aluminum Alkoxides (The Meerwein-Ponndorf-Verley Re-
duction). Org. React. 1944, 178-223; (b) Djerassi, C. The
Oppenauer Oxidation. Org. React. 1951, 207-272; (c) de
Graauw, C. F.; Peters, J. A.; van Bekkum, H.; Huskens, J.
Meerwein-Ponndorf-Verley Reductions and Oppenauer Ox-
idation: An Integrated Approach. Synthesis 1994, 1007-
1017; (d) Ooi, T.; Miura, T.; Itagaki, Y.; Ichikawa, H.; Maru-
oka, K. Catalytic Meerwein-Ponndorf-Verley (MPV) and
Oppenauer (OPP) Reactions: Remarkable Acceleration of
the Hydride Transfer by Powerful Bidentate Aluminum
Alkoxides. Synthesis, 2002, 279-291; (e) Cha, J. S. Recent
Developments In Meerwein−Ponndorf−Verley and Related
Reactions for the Reduction of Organic Functional Groups
Using Aluminum, Boron, and Other Metal Reagents:ꢀ A Re-
view. Org. Proc. Res. & Devel. 2006, 10, 1032-1053; (f) Ni-
konov, G. I. New Tricks for an Old Dog: Aluminum Com-
pounds as Catalysts in Reduction Chemistry. ACS Catalysis,
2017, 7, 7257-7266.
1
2
3
4
5
6
7
8
(10) For MPV reduction catalyzed by transition metals, see (a)
Evans, D. A.; Nelson, S. G.; Gagne, M. R.; Muci, A. R. A chiral
samarium-based catalyst for the asymmetric Meerwein-
Ponndorf-Verley reduction. J. Am. Chem. Soc. 1993, 115,
9800-9801; (b) Corma, A.; Domine, M. E.; Nemeth, L.; Va-
lencia, S. Al-Free Sn-Beta Zeolite as a Catalyst for the Selec-
tive Reduction of Carbonyl Compounds (Meer-
wein−Ponndorf−Verley Reaction). J. Am. Chem. Soc.
2002, 124, 3194-3195; (c) Zhu, Y.; Chuah, G. K.; Jaenicke, S.
Al-free Zr-zeolite beta as a regioselective catalyst in the
Meerwein–Ponndorf–Verley reaction. Chem. Commun.
2003, 2734-2735; (d) Battilocchio, C.; Hawkins, J. M.; Ley,
S. V. A Mild and Efficient Flow Procedure for the Transfer
Hydrogenation of Ketones and Aldehydes using Hydrous
Zirconia. Org. Lett. 2013, 15, 2278-2281; (e) Song, J.; Zhou,
B.; Zhou, H.; Wu, L.; Meng, Q.; Liu, Z.; Han, B. Porous Zirco-
nium-Phytic Acid Hybrid: a Highly Efficient Catalyst for
Meerwein-Ponndorf-Verley Reductions. Angew. Chem. Int.
Ed. 2015, 54, 9399-9403; (f) Plessers, E.; Fu, G.; Tan, C.; De
Vos, D.; Roeffaers, M. Zr-Based MOF-808 as Meerwein–
Ponndorf–Verley Reduction Catalyst for Challenging Car-
bonyl Compounds. Catalysts 2016, 6, 104-114; (g) Lee, J.;
Ryu, T.; Park, S.; Lee, P. H. Indium Tri(isopropoxide)-
Catalyzed Selective Meerwein–Ponndorf–Verley Reduction
of Aliphatic and Aromatic Aldehydes. J. Org. Chem. 2012,
77, 4821-4825; (h) Mollica, S.; Genovese, S.; Pinnen, S.;
Stefanucci, A.; Curini, M.; Epifano, F. Ytterbium triflate cata-
lysed Meerwein–Ponndorf–Verley (MPV) reduction. Tetra-
hedron Lett. 2012, 53, 890-892; (i) Leng, Y.; Shi, L.; Du, S.;
Jiang, J.; Jiang, P. A tannin-derived zirconium-containing
porous hybrid for efficient Meerwein–Ponndorf–Verley re-
duction under mild conditions. Green Chem. 2020, 22, 180.
(j) Wu, W.; Zou, S.; Lin, L.; Ji, J.; Zhang, Y.; Ma, B.; Liu, X.;
Feng, X. Catalytic asymmetric Meerwein–Ponndorf–Verley
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(5) Nishide, K.; Node, M. Recent development of asymmetric
syntheses based on the Meerwein-Ponndorf-Verley reduc-
tion. Chirality 2002, 14, 759-767.
(6) For aluminum-catalyzed MPV reductions accelerated by
Brønsted acid, see (a) Kow, R.; Nygren, R.; Rathke, M. W.
Rate enhancement of the Meerwein-Ponndorf-Verley-
Oppenauer reaction in the presence of proton acids. J. Org.
Chem. 1977, 42, 826-827; (b) Akamanchi, K. G.; Noorani, V.
R. Truly catalytic Meerwein-Ponndorf-Verley (MPV) reduc-
tion. Tetrahedron Lett. 1995, 36, 5085-5088.
(7) For aluminum-catalyzed MPV reductions accelerated by
ligands, see (a) Konishi, K.; Kazuyuki, M.; Aida, T.; Inoue, S.
Highly stereoselective hydrogen transfer from alcohols to
carbonyl compounds catalysed by aluminium porphyrins. J.
Chem. Soc., Chem. Commun. 1988, 643-645; (b) Ooi, T.;
Miura, T.; Maruoka, K. Highly Efficient, Catalytic Meerwein-
Ponndorf-Verley Reduction with a Novel Bidentate Alumi-
num Catalyst. Angew. Chem., Int. Ed. 1998, 37, 2347-2349;
(c) Ko, B.-T.; Wu, C.-C.; Lin, C.-C. Preparation, Characteriza-
tion, and Reactions of [(EDBP)Al(μ-OiPr)]2, a Novel Catalyst
for MPV Hydrogen Transfer Reactions. Organometallics
2000, 19, 1864-1869; (d) McNerney, B.; Whittlesey, B.;
Cordes, D. B.; Krempner, C. A Well-Defined Monomeric
Aluminum Complex as an Efficient and General Catalyst in
the Meerwein–Ponndorf–Verley Reduction. Chem. Eur. J.
2014, 20, 14959-14964; (e) Hua, Y.; Guo, Z.; Suo, H.; Wei, X.
Bidentate N, O-aluminum complexes: Synthesis, character-
ization and catalytic study for MPV reduction reactions. J.
Organomet. Chem. 2015, 794, 59-64; (f) Flack, K.; Kitagawa,
K.; Pollet, P.; Eckert, C. A.; Richman, K.; Stringer, J.; Dubay,
W.; Liotta, C. L. Al(OtBu)3 as an Effective Catalyst for the
Enhancement of Meerwein–Ponndorf–Verley (MPV) Re-
ductions. Org. Process Res. Dev. 2012, 16, 1301-1306; (g)
Normand, M.; Kirillov, E.; Roisnel, T.; Carpentier, J.-F.
Meerwein–Ponndorf–Verley-Type Reduction Processes in
Aluminum and Indium Isopropoxide Complexes of Imino-
Phenolate Ligands. Organometallics, 2012, 31, 5511.
reduction of glyoxylates induced by
a chiral N,N′-
dioxide/Y(OTf)3 complex. Chem. Commun. 2017, 53, 3232-
3235; (k) Hasiguchi, S.; Fujii, A.; Takehara, J.; Ikariya, T.;
Noyori, R., Asymmetric Transfer Hydrogenation of Aro-
matic Ketones Catalyzed by Chiral Ruthenium(II) Com-
plexes, J. Am. Chem. Soc. 1995, 117, 7562-7563.
(11) The reduction of ketones via transition metal mediated
transfer hydrogenation from alcohols is not considered as
an MPV reduction by some. The most common reductant
for transfer hydrogenation is formic acid. For a recent re-
view, see: Foubelo, F.; Najera, C.; Yus, M., Catalytic asym-
metric transfer hydrogenation of ketones: recent advances,
Tetrahedron: Asymmetry, 2015, 26, 769.
(12) Doering, W. E.; Young, R. W. Partially Asymmetric Meer-
wein-Ponndorf-Verley Reductions. J. Am. Chem. Soc. 1950,
72, 631.
(8) Campbell, E. J.; Zhou, H.; Nguyen, S. T. Catalytic Meer-
wein−Pondorf−Verley Reduction by Simple Aluminum
Complexes. Org. Lett. 2001, 3, 2391-2393.
(13) Cram, D. J.; Elhafez, F. A. A. Studies in Stereochemistry. X.
The Rule of “Steric Control of Asymmetric Induction” in the
Syntheses of Acyclic Systems. J. Am. Chem. Soc. 1952, 74,
5828–5835.
(9) For MPV reduction mediated by inorganic bases, see (a)
Ouali, A.; Majoral, J.-P.; Caminade, A.-M.; Taillefer, M. NaOH-
Promoted Hydrogen Transfer: Does NaOH or Traces of
Transition Metals Catalyze the Reaction? ChemCatChem
2009, 1, 504− 509; (b) Polshettiwar, V.; Varma, R. S.; Revis-
iting the Meerwein–Ponndorf–Verley reduction: a sustain-
able protocol for transfer hydrogenation of aldehydes and
ketones. Green Chem. 2009, 11, 1313−1316; (c) Radha-
(14) For asymmetric catalytic MPV reduction of ketones with
chiral aluminum complexes, see reference 15 and: (a)
Campbell, E. J.; Zhou, H.; Nguyen, S. T. The Asymmetric
Meerwein–Schmidt–Ponndorf–Verley Reduction of Prochi-
ral Ketones with iPrOH Catalyzed by Al Catalysts. Angew.
Chem. Int. Ed. 2002, 41, 1020-1022; (b) Nandi, P.; Solovyov,
A.; Okrut, A.; Katz, A. AlIII–Calix[4]arene Catalysts for
ACS Paragon Plus Environment