K. Hara et al. / Tetrahedron 65 (2009) 5030–5036
5035
2006, 45, 5978; (h) Xiong, Y.; Wang, F.; Huang, X.; Wen, Y.; Feng, X. Chem.dEur.
J. 2007, 13, 829; (i) Bandini, M.; Piccinelli, F.; Tommasi, S.; Umani-Ronchi, A.;
Ventrici, C. Chem. Commun. 2007, 616; (j) Ma, K.; You, J. Chem.dEur. J. 2007, 13,
40.2 mmol) and phenyl isocyanate (10.9 mL, 0.10 mmol) successively
at room temperature. After stirring for 30 min, the mixture was
refluxed for 40 h. Water was added to the mixture at rt, then one
drop of 1 M HCl was added. The product was extracted with Et2O
(ꢃ3), and combined organic layer was washed with brine, and then
dried over Na2SO4. After filtration, Et2O was evaporated under re-
duced pressure and the residue was purified by silica gel column
chromatography (hexane/ethyl acetate¼12:1) to give 6c (6.87 mg,
¨
1863; (k) Bulut, A.; Aslan, A.; Dogan, O J. Org. Chem. 2008, 73, 7373; (l) Liu, S.;
Wolf, C. Org. Lett. 2008, 10, 1831; (m) Kowalczyk, R.; Kwiatkowski, P.; Skar-
zewski, J.; Jurczak, J. J. Org. Chem. 2009, 74, 753 and references therein.
4. syn-Selective reaction: (a) Sasai, H.; Tokunaga, T.; Watanabe, S.; Suzuki, T.; Itoh,
N.; Shibasaki, M. J. Org. Chem. 1995, 60, 7388; anti-selective reaction; (b) Ni-
tabaru, T.; Kumagai, N.; Shibasaki, M. Tetrahedron Lett. 2008, 49, 272; (c) Handa,
S.; Nagawa, K.; Sohtome, Y.; Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed.
2008, 47, 3230.
5. (a) Ooi, T.; Doda, K.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 2054; (b) Risgaard,
T.; Gothelf, K. V.; Jørgensen, K. A. Org. Biomol. Chem. 2003, 1, 153; (c) Sohtome,
Y.; Hashimoto, Y.; Nagasawa, K. Eur. J. Org. Chem. 2006, 2894; (d) Purkarthofer,
T.; Gruber, K.; Gruber-Khadjawi, M.; Waich, K.; Skranc, W.; Mink, D.; Griengl, H.
Angew. Chem., Int. Ed. 2006, 45, 3454; (e) Sohtome, Y.; Takemura, N.; Takada, K.;
Takagi, R.; Iguchi, T.; Nagasawa, K. Chem. Asian J. 2007, 2, 1150; (f) Arai, T.;
Watanabe, M.; Yanagisawa, A. Org. Lett. 2007, 9, 3595; (g) Uraguchi, D.; Sakaki,
S.; Ooi, T. J. Am. Chem. Soc. 2007, 129, 12392; (h) Gruber-Khadjawi, M.; Pur-
karthofer, T.; Skranc, W.; Griengl, H. Adv. Synth. Catal. 2007, 349, 1445; (i) Blay,
84% yield) as a colorless oil. IR (neat)
(CDCl3)
n ;
2954, 1450 cmꢀ1 1H NMR
7.81–7.79 (m, 2H), 7.49–7.43 (m, 3H), 7.26 (dd, J¼7.6,
d
7.7 Hz, 2H), 7.17–7.14 (m, 3H), 6.57 (s, 1H), 2.71 (ddd, J¼4.9, 12.5,
13.5 Hz, 1H), 2.61 (ddd, J¼5.2, 12.5, 12.5 Hz, 1H), 2.20 (ddd, J¼5.2,
12.5, 13.5 Hz, 1H), 2.09 (ddd, J¼4.9, 12.5, 12.5 Hz, 1H), 1.77 (s, 3H),
1.00–0.97 (m, 9H), 0.67–0.62 (m, 6H); 13C NMR (CDCl3)
d 171.1,
169.3, 142.2, 130.0, 128.9, 128.3, 127.7, 125.8, 125.7, 98.4, 73.7, 46.7,
30.5, 27.5, 7.1, 6.6; ESI-MS m/z 193 [MþNa]þ; HRMS [FAB(þ)] calcd
´
G.; Domingo, L. R.; Hernandez-Olmos, V.; Pedro, J. R. Chem.dEur. J. 2008, 14,
26
for C25H33CsNO2Siþ [MþCs]þ: 540.1329; found 540.1334; [
(c 3.2, CHCl3).
a
]
þ1.1
4725.
D
6. (a) Christensen, C.; Juhl, K.; Jørgensen, K. A. Chem. Commun. 2001, 2222; (b)
Christensen, C.; Juhl, K.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2002, 67,
4875; (c) Lu, S. F.; Du, D. M.; Zhang, S. W.; Xu, J. Tetrahedron: Asymmetry 2004,
15, 3433; (d) Du, D.-M.; Lu, S.-F.; Fang, T.; Xu, J. J. Org. Chem. 2005, 70, 3712; (e)
Qin, B.; Xiao, X.; Liu, X.; Huang, J.; Wen, Y.; Feng, X. J. Org. Chem. 2007, 72, 9323;
(f) Choudary, B. M.; Ranganath, K. V. S.; Pal, U.; Kantam, M. L.; Sreedhar, B. J. Am.
Chem. Soc. 2005, 127, 13167; (g) Li, H.; Wang, B.; Deng, L. J. Am. Chem. Soc. 2006,
6.4.4. (R)-2-Hydroxy-2-methyl-4-phenyl-butyric acid (7c)
To a stirred solution of 5c (28.4 mg, 87.8
mmol) in dimethyl
sulfoxide (0.44 mL) and acetic acid (75.4 L, 1.32 mmol) was added
m
128, 732; (h) For a-keto phosphonates, see: Mandal, T.; Samanta, S.; Zhao, C.-G.
Org. Lett. 2007, 9, 943.
sodium nitrite (60.6 mg, 0.878 mmol) at room temperature. The
resulting mixture was stirred at room temperature for 12 h and
then at 40 ꢁC for 8 h. The solution was cooled down to room tem-
perature and quenched with 1 M HCl. The mixture was extracted
with Et2O (ꢃ3). The combined organic layers were washed with
2 M NaOH (3). Then, the combined water layers were acidified with
4 M HCl. The acidic water layer was again extracted with diethyl
ether (ꢃ3), and combined organic layers were dried over Na2SO4.
After filtration of Na2SO4, solvent was evaporated under reduced
pressure. The residue was purified by silica gel column chroma-
tography (CH2Cl2/MeOH¼6:1) to give 7c (16.8 mg, 99% yield) as
a colorless solid. 7c is known compound.25 The absolute configu-
ration of 7c was determined after conversion into a known ethyl
7. (a) For early works, see Tur, F.; Saa´, J. M. Org. Lett. 2007, 9, 5079 also; (b) Misumi,
Y.; Bulman, R. A.; Matsumoto, K. Heterocycles 2002, 56, 599.
8. (a) Seebach, D.; Lehr, F. Angew. Chem., Int. Ed. Engl. 1976, 15, 505; (b) Eyer, M.;
Seebach, D. J. Am. Chem. Soc. 1985, 107, 3601; (c) Kisanga, P. B.; Verkade, J. G.
J. Org. Chem. 1999, 64, 4298; (d) Gan, C.; Chen, X.; Lai, G.; Wang, Z. Synlett 2006,
387.
9. A portion of this work was previously reported as a preliminary communica-
tion: Tosaki, S.-y.; Hara, K.; Gnanadesikan, V.; Morimoto, H.; Harada, S.; Sugita,
M.; Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128,
11776.
10. (a) For selected recent examples using rare earth-alkali metal heterobimetallic
catalysts, see: Tian, J.; Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. Angew. Chem.,
Int. Ed. 2002, 41, 3636; (b) Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. J. Am.
Chem. Soc. 2003, 125, 16178; (c) Yamagiwa, N.; Qin, H.; Matsunaga, S.; Shibasaki,
M. J. Am. Chem. Soc. 2005, 127, 13419; (d) Yamagiwa, N.; Tian, J.; Matsunaga, S.;
Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 3413; (e) Sone, T.; Yamaguchi, A.;
Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2008, 130, 10078; See also: (f)
Morimoto, H.; Lu, G.; Aoyama, N.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc.
2007, 129, 9588; (g) Lu, G.; Morimoto, H.; Matsunaga, S.; Shibasaki, M. Angew.
Chem., Int. Ed. 2008, 47, 6847.
11. In the nitroaldol reaction in Table 1, excess nitromethane was required to
suppress undesired retro-nitroaldol reaction and to obtain kinetically con-
trolled product. We speculate that excess nitromethane was also important due
to a low equilibrium constant. Generally, equilibrium constants for aldol(-type)
reactions of ketone-electrophiles are much lower than those of aldehydes.
Different yields in entries 1–3 in Table 1 can be ascribed to the difference in
equilibrium constant depending on the substituents. For example, an equilib-
rium constant for aldol reaction of benzaldehyde and acetone is 11.7 Mꢀ1, while
that of acetophenone and acetone is 1.89ꢃ10ꢀ3 Mꢀ1. (a) Guthrie, J. P. J. Am.
Chem. Soc. 1991, 113, 7249; (b) Guthrie, J. P.; Wang, X.-P. Can. J. Chem. 1992, 70,
1055 and references therein.
12. For a kinetic resolution of tertiary aldols via retro-aldol reaction with a catalytic
antibody, see: (a) List, B.; Shabat, D.; Zhong, G.; Turner, J. M.; Li, A.; Bui, T.;
Anderson, J.; Lerner, R. A.; Barbas, C. F., III. J. Am. Chem. Soc. 1999, 121, 7283 and
references therein; For a retro-nitroaldol reaction with a catalytic antibody, see:
(b) Flanagan, M. E.; Jacobsen, J. R.; Sweet, E.; Schultz, P. G. J. Am. Chem. Soc. 1996,
118, 6078.
13. A general review for non-enzymatic kinetic resolution: (a) Vedejs, E.; Jure, M.
Angew. Chem., Int. Ed. 2005, 44, 3974; For examples of nonenzymatic kinetic
resolution of tert-alcohols, see: (b) Angione, M. C.; Miller, S. J. Tetrahedron 2006,
62, 5254 and references therein.
ester. 1H NMR (CD3OD)
d 7.21–7.18 (m, 2H), 7.13–7.09 (m, 3H), 2.82
(ddd, J¼3.4, 13.2, 13.2 Hz, 1H), 2.53 (ddd, J¼4.1, 12.6, 13.2 Hz, 1H),
2.10 (ddd, J¼3.4, 12.6, 13.2 Hz, 1H), 1.85 (ddd, J¼4.1, 13.2, 13.2 Hz,
1H), 1.45 (s, 3H); 13C NMR (CD3OD)
d 179.4, 143.3, 129.4, 129.3,
31
126.8, 75.4, 43.7, 31.3, 26.5; [
a
]
þ16.9 (c 0.13, MeOH).
D
Acknowledgements
This work was partially supported by Grant-in-Aid for Specially
Promoted Research, Grant-in-Aid for Scientific Research (S), Grant-
in-Aid for Scientific Research on Priority Areas (No. 20037010,
Chemistry of Concerto Catalysis) (for S.M.) from JSPS and MEXT.
H.M. and S.H. thank JSPS fellowships.
References and notes
1. For recent reviews of the catalytic asymmetric nitroaldol reaction, see: (a)
Palomo, C.; Oiarbide, M.; Laso, A. Eur. J. Org. Chem. 2007, 2561; (b) Boruwa, J.;
Gogoi, N.; Saikia, P. P.; Barua, N. C. Tetrahedron: Asymmetry 2006, 17, 3315; (c)
Palomo, C.; Oiarbide, M.; Mielgo, A. Angew. Chem., Int. Ed. 2004, 43, 5442.
2. (a) Sasai, H.; Suzuki, T.; Arai, S.; Arai, T.; Shibasaki, M. J. Am. Chem. Soc. 1992, 114,
4418; For reviews, see: (b) For selected recent works from our group, see Shi-
basaki, M.; Sasai, H.; Arai, T. Angew. Chem., Int. Ed.1997, 36, 1236; (c) Sohtome, Y.;
Kato, Y.; Handa, S.; Aoyama, N.; Nagawa, K.; Matsunaga, S.; Shibasaki, M. Org. Lett.
2008, 10, 2231; (d) Mihara, H.; Sohtome, Y.; Matsunaga, S.; Shibasaki, M. Chem.
Asian J. 2008, 3, 359.
14. For discussion on validity of calculated s values, see s values in this manuscript
were calculated based on conversion and ee of recovered 3 assuming first-
order kinetic dependence on 3. Kinetic studies are required to determine
accurate s values Keith, J. M.; Larrow, J. F.; Jacobsen, E. N. Adv. Synth. Catal.
2001, 343, 5.
15. Biphenyldiol 1e: (a) Meyers, A. I.; Nelson, T. D.; Moorlag, H.; Rawson, D. J.;
Meier, A. Tetrahedron 2004, 60, 4459; For the utility of biphenyldiols in other
asymmetric reactions, see: (b) Harada, T.; Tuyet, T. M. T.; Oku, A. Org. Lett. 2000,
2, 1319; (c) Kakei, H.; Sone, T.; Sohtome, Y.; Matsunaga, S.; Shibasaki, M. J. Am.
Chem. Soc. 2007, 129, 13410; (d) Kakei, H.; Tsuji, R.; Ohshima, T.; Morimoto, H.;
Matsunaga, S.; Shibasaki, M. Chem. Asian J. 2007, 2, 257; (e) Yamaguchi, A.;
Aoyama, N.; Matsunaga, S.; Shibasaki, M. Org. Lett. 2007, 9, 3387; (f) Hara, K.;
Park, S.-y.; Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. Chem. Asian J. 2008, 3,
1500.
3. For selected examples using nitromethane and aldehydes by other groups, see:
(a) Trost, B. M.; Yeh, V. S. C. Angew. Chem., Int. Ed. 2002, 41, 861; (b) Evans, D. A.;
Seidel, D.; Rueping, M.; Lam, H. W.; Shaw, J. T.; Downey, C. W. J. Am. Chem. Soc.
2003, 125, 12692; (c) Kogami, Y.; Nakajima, T.; Ashizawa, T.; Kezuka, S.; Ikeno,
T.; Yamada, T. Chem. Lett. 2004, 33, 614; (d) Palomo, C.; Oiarbide, M.; Laso, A.
Angew. Chem., Int. Ed. 2005, 44, 3881; (e) Sohtome, Y.; Hashimoto, Y.; Nagasawa,
K. Adv. Synth. Catal. 2005, 347, 1643; (f) Marcelli, T.; van der Haas, R. N. S.; van
Maarseveen, J. H.; Hiemstra, H. Angew. Chem., Int. Ed. 2006, 45, 929; (g) Arai, T.;
Watanabe, M.; Fujiwara, A.; Yokoyama, N.; Yanagisawa, A. Angew. Chem., Int. Ed.