complexes. As a result of exceedingly mild reaction conditions
and operational simplicity, much effort has been directed toward
the development of asymmetric hydrosilylation of carbon-carbon
and carbon-heteroatom bonds using precious metals such as
rhodium,5 ruthenium,6 and iridium.7 Recently, asymmetric
hydrosilylation of prochiral ketones using polymethylhydrosi-
loxane (PMHS), an inexpensive, nontoxic polymer coproduct
of the silicon industry, as hydride source and easily accessible
catalysts based on titanium,8 zinc9 and tin10 have opened a new
pathway in this area. Very recently, iron-catalyzed asymmetric
hydrosilylation reactions are also reported.11 The utility of
copper for hydride delivery was studied with the Stryker reagent
[CuH·PPh3], a stoichiometric reducing agent for the reduction
of enones.12 Buchwald described a highly enantioselective 1,4-
reduction of R,ꢀ-unsaturated esters and ꢀ-substituted enones
using an active catalyst generated in situ from CuCl/NaO-t-Bu/
chiral diphosphine ligands and PMHS.13 The effectiveness of
[CuH·PPh3] for the hydrosilylation of carbonyl compounds was
reported by Lipshutz.14 Subsequent studies by the same group
led to the development of highly enatioselective hydrosilylation
of ketones based on CuCl/NaO-t-Bu/chiral diphosphine
ligands.15 Copper fluoride and copper acetate also catalyzed the
asymmetric hydrosilylation reaction of prochiral ketones in
presence of BINAP ligand.16
Asymmetric Hydrosilylation of Ketones Catalyzed
by Magnetically Recoverable and Reusable
Copper Ferrite Nanoparticles
M. Lakshmi Kantam,*,† Jagjit Yadav,† Soumi Laha,†
Pottabathula Srinivas,† Bojja Sreedhar,† and F. Figueras‡
Indian Institute of Chemical Technology, Hyderabad-500007,
India, and Institut de recherches sur la catalyse et
l’enVironnement de Lyon, Lyon 69626 Cedex, France
ReceiVed February 10, 2009
Industry favors the catalytic process induced by a heteroge-
neous catalyst over the homogeneous one in view of its ease of
handling, simple workup, and regenerability. Recently, Lipshutz
Herein we present magnetically recoverable and reusable
copper ferrite nanoparticles for asymmetric hydrosilylation
of several ketones. Up to 99% enantiometric excess was
obtained at room temperature using polymethylhydrosiloxane
as the stoichiometric reducing agent. The copper ferrite
nanoparticles were magnetically separated, and the efficiency
of the catalyst remains almost unaltered up to three cycles.
(4) (a) Liu, P. N.; Deng, J. G.; Tu, Y. Q.; Wang, H. Chem. Commun. 2004,
2070. (b) Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.; Noyori, R. J. Am.
Chem. Soc. 1996, 118, 2521. (c) Sterk, D.; Stephen, M.; Mohar, B. Org. Lett.
2006, 8, 5935. (d) Liu, G.; Yao, M.; Zhang, F.; Gao, Y.; Li, H. Chem. Commun.
2008, 347.
(5) (a) Gade, L. H.; Cesar, V.; Bellemin-Laponnaz, S. Angew. Chem., Int.
Ed. 2004, 43, 1014. (b) Duan, W.-L.; Shi, M.; Rong, G. B. Chem. Commun.
2003, 2916. (c) Evans, D.; Micheal, A. F. E.; Tedrow, J. S.; Campos, K. R.
J. Am. Chem. Soc. 2003, 125, 3534.
(6) (a) Zhu, G.; Terry, M.; Zhang, X. J. Organomet. Chem. 1997, 547, 97.
(b) Nishibayashi, Y.; Takei, I.; Uemura, S.; Hidai, M. Organometallics 1998,
17, 3420.
(7) Chianese, A. R.; Crabtree, R. H. Organometallics 2005, 24, 4432.
(8) (a) Yun, J.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 5640. (b)
Halterman, R. L.; Ramsey, T. M.; Chen, Z. J. Org. Chem. 1994, 59, 2642. (c)
Riant, O.; Mostefai, N.; Courmarcel, J. Synthesis 2004, 2943.
(9) (a) Mimoun, H.; Laumer, J. Y.; L.; Scopelliti, R.; Floriani, C. J. Am.
Chem. Soc. 1999, 121, 6158. (b) Bette, V.; Mortreux, A.; Savoia, D.; Carpentier,
J.-F. AdV. Synth. Catal. 2005, 347, 289.
(10) Lawrence, N.; Bushell, S. M. Tetrahedron Lett. 2000, 41, 4507.
(11) (a) Nishiyama, H.; Furuta, A. Chem. Commun. 2007, 760. (b) Shaikh,
N. S.; Enthaler, S.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2008, 47, 2497.
(12) (a) Mahoney, W. S.; Brestensky, D. M.; Stryker, J. M. J. Am. Chem.
Soc. 1988, 110, 291. (b) Koenig, T. M.; Daeuble, J. F.; Brestensky, D. M.;
Stryker, J. M. Tetrahedron Lett. 1990, 31, 3237.
(13) (a) Appella, D. H.; Moritani, Y.; Shintani, R.; Ferreira, E. M.; Buchwald,
S. L. J. Am. Chem. Soc. 1999, 121, 9473. (b) Moritani, Y.; Appella, D. H.;
Jurkauskas, V.; Buchwald, S. L. J. Am. Chem. Soc. 2000, 122, 6797.
(14) Lipshutz, B. H.; Chrisman, W.; Noson, K. J. Organomet. Chem. 2001,
624, 367.
Intensive studies have recently been focused on the develop-
ment of asymmetric catalytic systems owing to their importance
in synthetic organic chemistry.1 Catalytic asymmetric reduction
of prochiral ketones leads to the formation of enantiomerically
pure chiral alcohols, which are key building blocks for the
manufacture of pharmaceuticals, agrochemicals, and advanced
materials.2 Asymmetric hydrogenation3 and transfer hydrogena-
tion4 are the most frequently used catalytic methods for the
reduction of prochiral ketones using transitional metal chiral
† Indian Institute of Chemical Technology.
‡ Institut de recherches sur la catalyse et l’environnement.
(1) (a) Ohkuma, T.; Kitamura, M.; Noyori, R. In Catalytic Asymmetric
Synthesis, 2nd ed.; Ojima, I., Ed.; Wiely-VCH: New York, 2000; Chapter 1,
1-110. (b) Tang, W.; Zhang, X. Chem. ReV. 2003, 103, 3029.
(2) (a) Astleford, B. A.; Weigel, L. O. In Chirality in Industry II; Collins,
A. N., Ed.; Wiley: New York, 1997, p 99. (b) Lennon, I. C.; Ramsden, J. A.
Org. Process Res. DeV. 2005, 9, 110.
(3) (a) Noyori, R. Asymmetric Catalysis in Organic Synthesis; Wiley: New
York, 1994. (b) Mikami, K.; Wakabayashi, K.; Aikawa, K. Org. Lett. 2006, 8,
1517. (c) Ohkuma, T.; Utsumi, N.; Watanabe, M.; Tsutsumi, K.; Arai, N.; Murata,
K. Org. Lett. 2007, 9, 2565. (d) Shimizu, H.; Igarashi, D.; Kuriyama, W.; Yusa,
Y.; Sayo, N.; Saito, T. Org. Lett. 2007, 9, 1655. (e) Hamilton, R. J.; Berger,
S. H. J. Am. Chem. Soc. 2006, 128, 13700.
(15) (a) Lipshutz, B. H.; Noson, K.; Chrisman, W. J. Am. Chem. Soc. 2001,
123, 12917. (b) Lipshutz, B. H.; Lower, A.; Noson, K. Org. Lett. 2002, 4, 4045.
(c) Lipshutz, B. H.; Noson, K.; Chrisman, W.; Lower, A. J. Am. Chem. Soc.
2003, 125, 8779.
(16) (a) Sirol, S.; Courmarcel, J.; Mostefai, N.; Riant, O. Org. Lett. 2001, 3,
4111. (b) Lee, D. -W.; Yun, J. Tetrahedron Lett. 2004, 45, 5415.
4608 J. Org. Chem. 2009, 74, 4608–4611
10.1021/jo9002823 CCC: $40.75 2009 American Chemical Society
Published on Web 05/19/2009