Paper
Dalton Transactions
lected (3.05 < θ < 27.00°), 11 591 were found to be unique and
( j) A. Chartoire, X. Frogneux, A. Boreux, A. M. Z. Slawin
and S. P. Nolan, Organometallics, 2012, 31, 6947–6951;
(k) C. Valente, S. Çalimsiz, K. H. Hoi, D. Mallik, M. Sayah
and M. G. Organ, Angew. Chem., Int. Ed., 2012, 51, 3314–
3332; (l) S. Meiries, K. Speck, D. B. Cordes, A. M. Z. Slawin
and S. P. Nolan, Organometallics, 2013, 32, 330–339;
(m) D. J. Nelson and S. P. Nolan, Chem. Soc. Rev., 2013, 42,
6723–6753; (n) G. Le Duc, S. Meiries and S. P. Nolan,
Organometallics, 2013, 32, 7547–7551; (o) N. Sahin,
D. Sémeril, E. Brenner, D. Matt, I. Özdemir, C. Kaya and
L. Toupet, Eur. J. Org. Chem., 2013, 4443–4449;
6
846 were observed (merging R = 0.0708). The structure was
2
3
solved with SHELXS-97. Final results: R
2
1 2 1
, R , wR , wR , Goof;
0
.1315, 0.0645, 0.1176, 0.0941, 1.019. Residual electron density
−
3
minimum/maximum = −0.621/0.759 e Å
.
CCDC-875396 (for 8), 901467 (for 9) and 1004245 (for 11)
contain the supplementary crystallographic data for this
paper.
Computational details
2
4
Calculations were performed using the ADF 2013 package.
All electrons Slater type orbitals were used with all-electron
(
p) C. Valente, M. Pompeo, M. Sayah and M. G. Organ,
Org. Process Res. Dev., 2014, 18, 180–190;
q) M. N. Hopkinson, C. Richter, M. Schedler and
F. Glorius, Nature, 2014, 510, 485–496.
2
5
triple-ζ quality basis sets at DFT level with PBE functional.
Dispersive interactions were taken into account applying
(
26
Grimme corrections. Scalar relativistic effects were included
2
7
2 (a) G. A. Grasa, M. S. Viciu, J. K. Huang, C. M. Zhang,
M. L. Trudell and S. P. Nolan, Organometallics, 2002, 21,
through ZORA Hamiltonian. Full geometry optimization was
performed on the complexes. Interaction energy between the
silver atom of 11 and the fluorenyl moiety was calculated by
two methods. First, the ethylfluorenyl groups were rotated
around the corresponding N–C bond moving the fluorenyli-
dene plane from a position in which it is bent towards the
metal centre to the opposite one (calculation 1). Secondly, we
computed the substitution energy of a NHC-complex having
two propyl chains instead of ethylfluorenyl groups by the NHC
bearing two ethylfluorenyl groups (calculation 2). Both calcu-
lations showed that the complex where interaction between
the silver atom and the fluorenyl groups occurs is more stable
2
866–2873; (b) R. Singh, M. S. Viciu, N. Kramareva,
O. Navarro and S. P. Nolan, Org. Lett., 2005, 7, 1829–1832;
c) J. Nasielski, N. Hadei, G. Achonduh, E. A. B. Kantchev,
C. J. O’Brien, A. Lough and M. G. Organ, Chem. – Eur. J.,
010, 16, 10844–10853; (d) S. Dastgir, K. S. Coleman,
A. R. Cowley and M. L. H. Green, Organometallics, 2010, 29,
858–4870; (e) Y. Q. Tang, J. M. Lu and L. X. Shao, J. Orga-
(
2
4
nomet. Chem., 2011, 696, 3741–3744.
3
(a) W. A. Herrmann, V. P. W. Böhm, C. W. K. Gstöttmayr,
M. Grosche, C. P. Reisinger and T. Weskamp, J. Organomet.
Chem., 2001, 617, 616–628; (b) O. Navarro, H. Kaur,
P. Mahjoor and S. P. Nolan, J. Org. Chem., 2004, 69, 3173–
ΔE = 3.2 kcal mol− for calculation 1; ΔE = 3.8 kcal mol for
1
−1
(
calculation 2).
3180; (c) C. Burstein, C. W. Lehmann and F. Glorius,
Tetrahedron, 2005, 61, 6207–6217; (d) N. Hadei,
E. A. B. Kantchev, C. J. O’Brien and M. G. Organ, Org. Lett.,
Acknowledgements
2005, 7, 1991–1994; (e) N. Marion, O. Navarro, J. G. Mei,
This work was supported by the Ministère de l’Enseignement
Supérieur et de la Recherche for a grant to M.T. We gratefully
acknowledge the CNRS and the University of Strasbourg for
their financial support.
E. D. Stevens, N. M. Scott and S. P. Nolan, J. Am. Chem.
Soc., 2006, 128, 4101–4111; (f) C. Fleckenstein, S. Roy,
S. Leuthausser and H. Plenio, Chem. Commun., 2007, 2870–
2872; (g) O. Diebolt, V. Jurcik, R. C. da Costa, P. Braunstein,
L. Cavallo, S. P. Nolan, A. M. Z. Slawin and C. S. J. Cazin,
Organometallics, 2010, 29, 1443–1450; (h) M. T. Chen,
D. A. Vicic, M. L. Turner and O. Navarro, Organometallics,
References
2011, 30, 5052–5056; (i) T. Tu, Z. M. Sun, W. W. Fang,
1
(a) W. A. Herrmann, Angew. Chem., Int. Ed., 2002, 41,
290–1309; (b) A. F. Littke and G. C. Fu, Angew. Chem.,
Int. Ed., 2002, 41, 4176–4211; (c) C. M. Crudden and
D. P. Allen, Coord. Chem. Rev., 2004, 248, 2247–2273;
M. Z. Xu and Y. F. Zhou, Org. Lett., 2012, 14, 4250–4253;
( j) Z. Y. Wang, Q. N. Ma, R. H. Li and L. X. Shao, Org.
Biomol. Chem., 2013, 11, 7899–7906.
4 C. W. K. Gstöttmayr, V. P. W. Böhm, E. Herdtweck,
M. Grosche and W. A. Herrmann, Angew. Chem., Int. Ed.,
2002, 41, 1363–1365.
5 M. G. Organ, S. Çalimsiz, M. Sayah, K. H. Hoi and
A. J. Lough, Angew. Chem., Int. Ed., 2009, 48, 2383–
2387.
6 B. R. Dible, R. E. Cowley and P. L. Holland, Organometallics,
2011, 30, 5123–5132.
1
(
d) S. Díez-González, N. Marion and S. P. Nolan, Chem.
Rev., 2009, 109, 3612–3676; (e) E. A. B. Kantchev,
C. J. O’Brien and M. G. Organ, Angew. Chem., Int. Ed., 2007,
4
6, 2768–2813; (f) A. S. K. Hashmi, C. Lothschütz,
C. Böhling, T. Hengst, C. Hubbert and F. Rominger, Adv.
Synth. Catal., 2010, 352, 3001–3012; (g) G. C. Fortman and
S. P. Nolan, Chem. Soc. Rev., 2011, 40, 5151–5169;
(
h) L. Benhamou, E. Chardon, G. Lavigne, S. Bellemin-
Laponnaz and V. Cesar, Chem. Rev., 2011, 111, 2705–2733;
i) A. S. K. Hashmi, C. Lothschütz, C. Böhling and
F. Rominger, Organometallics, 2011, 30, 2411–2417;
7 M. Kuriyama, S. Matsuo, M. Shinozawa and O. Onomura,
Org. Lett., 2013, 15, 2716–2719.
8 C. Song, Y. D. Ma, Q. Chai, C. Q. Ma, W. Jiang and
M. B. Andrus, Tetrahedron, 2005, 61, 7438–7446.
(
Dalton Trans.
This journal is © The Royal Society of Chemistry 2015