pubs.acs.org/joc
are important structural substructures in numerous natural
Pd(PPh3)4-PEG 400 Catalyzed Protocol for the
Atom-Efficient Stille Cross-Coupling Reaction of
Organotin with Aryl Bromides
products, polymers, agrochemicals, and pharmaceutical med-
iates.4 During the past decades, numerous efforts have been made
to develop an efficient catalyst protocol for Stille cross-coupling
reactions.5 However, most of these reactions were carried out in
organic solvents under inert and anhydrous conditions due to the
instability of most catalysts and coupling reagents.
Wen-Jun Zhou,† Ke-Hu Wang,† and Jin-Xian Wang*,†,‡
†Institute of Chemistry, Department of Chemistry,
Northwest Normal University, 967 An Ning Road (E.),
Lanzhou 730070, P. R. China, and ‡State Key Laboratory of
Applied Organic Chemistry, Lanzhou University,
Lanzhou 730000, P. R. China
The advantage of tetraphenyltin is that it can react with
4 equiv of electrophilic reagents.6 Despite this obvious
advantage, only a few reactions involving tetraphenyltin
for C-C bond formation have been reported.7-9 Further-
more, almost all of these reactions suffer from drawbacks
such as atom inefficiency, long reaction times, and harsh
reaction conditions. In our recent investigations, luckily, we
found that tetraphenyltin can react with 4 equiv of aryl
bromides in the Stille cross-coupling reaction, which has
attracted our attention as a viable atom-efficient organome-
tallic coupling partner for C-C bond formations. Hence, to
expand the scope and reactivity of tetraphenyltin, the devel-
opment of new and efficient catalytic protocols is in demand.
As environmentally friendly “green” synthesis is becoming
more and more important, it is desirable to avoid any use of
hazardous and expensive organic solvents. To satisfy these
concerns, polyethylene glycol (PEG) represents a very at-
tractive medium for organic reactions.10 PEG as an envir-
onmentally benign protocol proved to have many appli-
cations, particularly in coupling,11 oxidation,12 substitution,13
Received March 9, 2009
Aryl bromides (4 equiv) were coupled efficiently with
organotin (1 equiv) in an atom-efficient way using the
tetra(triphenylphosphine)palladium/polyethylene glycol
400 (Pd(PPh3)4/PEG 400) catalytic system in the presence
of sodium acetate (NaOAc) as base at 100 °C, providing
excellent yields of the corresponding functionalized bi-
aryls in short reaction times.
(4) (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483. (b)
Yong, B. S.; Nolan, S. P. Chemtracts: Org. Chem. 2003, 205–227. (c) Phan, N.
T. S.; Van Der Sluys, M.; Jones, C. W. Adv. Synth. Catal. 2006, 348, 609–679.
(5) (a) Imperato, G.; Vasold, R.; Konig, B. Adv. Synth. Catal. 2006, 348,
2243–2247. (b) Santos, L. S.; Rosso, G. B.; Dilli, R. A.; Eberlin, M. N. J. Org.
Chem. 2007, 72, 5809–5812. (c) Wolf, C.; Lerebours, R. J. Org. Chem. 2003,
68, 7077–7084. (d) Kantam, M. L.; Roy, S.; Roy, M.; Sreedhar, B.;
Choudary, B. M. Adv. Synth. Catal. 2005, 347, 2002–2008. (e) Li, J.; Liang,
Y.; Wang, D.; Liu, Y.; Xie, Y.; Yin, D. J. Org. Chem. 2005, 70, 2832–2834. (f)
Coleman, R. S.; Walczak, M. C. Org. Lett. 2005, 7, 2289–2291. (g) Kang, S. -
K.; Baik, T. -G.; Song, S.-Y. Synlett 1999, 327–329. (h) Naber, J. R.;
Buchwald, S. L. Adv. Synth. Catal. 2008, 350, 957–961.
(6) Ohe, T.; Uemura, S. Bull. Chem. Soc. Jpn. 2003, 76, 1423–1431.
(7) (a) Rombouts, F. J. R.; De Borggraeve, W. M.; Delaere, D.; Froeyen,
M.; Toppet, S. M.; Compernolle, F.; Hoornaert, G. J. Eur. J. Org. Chem.
2003, 1868–1878. (b) Buysens, K. J.; Vandenberghe, D. M.; Hoornaert, G. J.
Tetrahedron 1996, 52, 9161–9178. (c) Kobayashi, T.; Sakakura, T.; Tanaka,
M. Tetrahedron Lett. 1985, 26, 3463–3466. (d) Kogan, V.; Aizenshtat, Z.;
Popovitz-Biro, R.; Neumann, R. Org. Lett. 2002, 4, 3529–3532.
(8) (a) Rohand, T.; Qin, W.; Boens, N.; Dehaen, W. Eur. J. Org. Chem.
2006, 4658–4663. (b) Yamada, K.; Somei, M. Heterocycles 1998, 48, 2481–
2484. (c) Lavecchia, G.; Berteina-Raboin, S.; Guillaumet, G. Tetrahedron
Lett. 2004, 45, 6633–6636. (d) Buysens, K. J.; Vandenberghe, D. M.;
Hoornaert, G. J. Tetrahedron 1996, 52, 9161–9178.
(9) (a) Ohta, A.; Ohta, M.; Watanabe, T. Heterocycles 1986, 24, 785–792.
(b) Fugami, K.; Ohnuma, S.; Kameyama, M.; Saotome, T.; Kosugi, M.
Synlett 1999, 63–64. (c) Palmer, B. D.; Thompson, A. M.; Booth, R. J.;
Dobrusin, E. M.; Kraker, A. J.; Lee, H. H.; Lunney, E. A.; Mitchell, L. H.;
Ortwine, D. F.; Smaill, J. B.; Swan, L. M.; Denny, W. A. J. Med. Chem. 2006,
49, 4896–4911.
(10) Chen, J.; Spear, S. K.; Huddleston, J. G.; Rogers, R. D. Green Chem.
2005, 7, 64–82.
(11) (a) Chandrasekhar, S.; Narsihmulu, C.; Sultana, S. S.; Reddy, N. R.
Org. Lett. 2002, 4, 4399–4401. (b) Mao, J.; Guo, J.; Fang, F.; Ji, S.
Tetrahedron 2008, 64, 3905–3911. (c) Xu, L.; Chen, W.; Ross, J.; Xiao, J.
Org. Lett. 2001, 3, 295–297.
The cross-coupling reactions of organometallic reagents with
electrophilic reagents are an important route for carbon-carbon
bond formation.1 The Stille reaction, known as palladium-
catalyzed cross-coupling of organostannanes with organic halides
and triflates, has proven to be one of the most important,
powerful, and versatile tools for the formation of carbon-carbon
bonds.2 This coupling reaction has been widely applied in organic
synthesis,3 especially in the synthesis of biaryls compounds, which
(1) (a) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed.
2005, 44, 4442–4489. (b) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.;
Lemaire, M. Chem. Rev. 2002, 102, 1359–1469. (c) Kotha, S.; Lahiri, K.;
Kashinath, D. Tetrahedron 2002, 58, 9633–9695. (d) Hassa, J.; Svignon, M.;
Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359–1470. (e)
Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483. (f) Christmann, U.;
Vilar, R. Angew. Chem., Int. Ed. 2005, 44, 366–374.
(2) (a) Stille, J. K. Pure Appl. Chem. 1985, 57, 1771–1780. (b) Stille, J. K.
Angew. Chem., Int. Ed. Engl. 1986, 25, 508–524. (c) Amatore, C.; Bahsoun, A.
A.; Jutand, A.; Meyer, G.; Ntepe, A. N.; Ricard, L. J. Am. Chem. Soc. 2003,
125, 4212–4215. (d) Carcia-Martinez, J. C.; Lezutekong, R.; Crooks, R. M. J.
Am. Chem. Soc. 2005, 127, 5097–5103. (e) Tang, H.; Menzel, K.; Fu, G. C.
Angew. Chem., Int. Ed. 2003, 42, 5079–5082.
(3) (a) Pchalek, K.; Hay, M. P. J. Org. Chem. 2006, 71, 6530–6535. (b)
Thibonnet, J.; Abarbri, M.; Parrain, J. -C.; Duchene, A. J. Org. Chem. 2002,
67, 3941–3944. (c) Vaz, B.; Alvarez, R.; Bruckner, R.; de Lera, A. R. Org.
Lett. 2005, 7, 545–548. (d) Vaz, B.; Alvarez, R.; de Lera, A. R. J. Org. Chem.
2002, 67, 5040–5043. (e) Echavarren, A. M. Angew. Chem., Int. Ed. 2005, 44,
3962–3965.
(12) (a) Haimov, A.; Neumann, R. Chem. Commun. 2002, 876–877. (b)
Hou, Z.; Thetssen, N.; Leitner, W. Green Chem. 2007, 9, 127–132. (c) Jenzer,
G.; Sueur, D.; Mallat, T.; Baiker, A. Chem. Commun. 2000, 2247–2248.
(13) Namboodiri, V. V.; Varma, R. S. Green Chem. 2001, 3, 146–148.
DOI: 10.1021/jo9005206
r
Published on Web 06/24/2009
J. Org. Chem. 2009, 74, 5599–5602 5599
2009 American Chemical Society