LETTER
The Palladium Catalysed Suzuki Coupling of 2- and 4-Chloropyridines
47
spectively.12b 4-Chloroquinoline reacts 7.5 times faster than 4-
chloropyri-dine for the same displacement reaction.12b
(12) a) For a general discussion concerning the reactivity of aro-
matic heterocycles towards nucleophilic substitution at car-
bon, see: Joule, J. A.; Mills, K.; Smith, G. F. Heterocyclic
Chemistry, 3rd ed.; Chapman & Hall: London, 1995; p. 24.
b) Chapman, N. B.; Russel-Hill, D. Q. J. Chem. Soc. 1956,
1563. c) For examples of coupling reactions of chloroquino-
lines, see: Ciufolini, M. A.; Mitchell, J. W.; Roschangar, F.
Tetrahedron Lett. 1996, 37, 8281.; Dunn, S. H.; McKillop, A.
J. Chem. Soc., Perkin Trans. I 1993, 8, 879.; Ali, N. M.;
McKillop, A.; Mitchell, M. B.; Rebelo, R. A.; Wallbank, P. J.
Tetrahedron 1992, 37, 8117. d) For examples of coupling re-
actions of chloropurines, see: Gundersen, L.-L. Tetrahedron
Lett. 1994, 35, 3155. e) Mitchell, M. B.; Wallbank, P. J. Tetra-
hedron Lett. 1991, 32, 2273. f) Rocca, P.; Marsais, F.; Godard,
A.; Quéguiner, G. Tetrahedron Lett. 1993, 34, 2937.
(13) a) Gouda, K.; Hagiwara, E.; Hatanaka, Y.; Hiyama, T. J. Org.
Chem. 1996, 61, 7232. b) Indolese, A. F. Tetrahedron Lett.
1997, 38, 3513. c) Saito, S.; Sakai, M.; Miyaura, N. Tetrahe-
dron Lett. 1996, 37, 2993. d) Beller, M.; Fischer, H.; Herr-
mann, W. A.; Öfele, K.; Brossmer, C. Angew. Chem., Int. Ed.
Engl. 1995, 34, 1848. e) Firooznia, F.; Gude, C.; Chan, K.;
Satoh, Y. Tetrahedron Lett. 1998, 39, 3985.
were shown to be particularly good substrates for palladi-
um catalysed Suzuki coupling.
Acknowledgement
We thank K. Killius and M. Weibel for their technical assistance
and A. Brodbeck for the preparation of large quantities of 4-chloro-
picolinic acid.
References and Notes
¥) Present address: KTH - Royal Institute of Technology,
Department of Chemical Engineering and Technology,
S-10044 Stockholm, Sweden.
(1) Micetich, R. G. The Chemistry of Heterocyclic Compounds,
Vol. 14, Supplement Part 2, Abramovitch, R. A., Ed.; Wiley:
New York, 1974.
(2) a) Chambers, R. J.; Marfat, A.; Cheng, J. B.; Cohan, V. L.;
Damon, D. B.; Duplantier, A. J.; Hibbs, T. A.; Jenkinson, T.
H.; Johnson, K. L.; Kraus, K. G.; Pettipher, E. R.; Salter, E.
D.; Shirley, J. T.; Umland, J. P. Bioorg. Med. Chem. Lett.
1997, 7, 739. b) Boyd, E.C.; Eaton, M. A.W.; Warrellow, G.
J. PCT Int. Appl., WO 9410118, 1994; Chem. Abstr. 1994,
122, 31544.
(3) a) Maini, R. N.; Elliot, M. J.; Brennan, F. M.; Feldmann, M.
Clin. Exp. Immunol. 1995, 101, 207. b) Elliot, M. J.; Maini, R.
N.; Feldmann, M.; Kalden, J. R.; Antoni, C.; Macfarlane, J.
D.; Bijl, H.; Woody, J. N. Lancet 1994, 344, 1105.
(4) Singh, B.; Lesher, G. Y. J. Heterocycl. Chem. 1991, 28, 933.
(5) Butler, D. E.; Bass, P.; Nordin, I. C.; Hauck, F. P. Jr.; L’Itali-
en, Y. J. Med. Chem. 1971, 14, 575.
(14) Miyaura, N.; Yanagi, T.; Suzuki, A. Synth. Commun. 1981,
11, 513.
(15) Shieh, W.-C.; Carlson, J. A. J. Org. Chem. 1992, 57, 379.
(16) Gronowitz, S.; Bobosik, V.; Lawitz, K. Chem. Scrip. 1984, 23,
120.
(17) For small scale experiments, we recommend the use of com-
mercially available Pd(PPh3)4. When scaling up, in-situ gener-
ated Pd(0) should be preferred as a more reliable and cheaper
catalyst.24b
(6) Riggio, G.; Hopff, W. H.; Hofman, A. A.; Waser, P. G. Helv.
Chim. Acta 1983, 66, 1039.
(7) Barton, A. E. Eur. Pat. Appl. 87-303372, 1987; Chem. Abstr.
1988, 108, 150320.
Typical procedure: 10 g 2-chloropyridine (1 eq.; 88.1
mmol), 12.9 g phenylboronic acid (1.2 eq.; 105.8 mmol) and
2.31 g triphenylphosphine (0.1 eq.; 8.81 mmol) were dissol-
ved in 1,2-dimethoxyethane (100 mL). 120 mL of a 2M
K2CO3 (2.7 eq.; 240 mmol) aqueous solution were added and
the mixture was purged with argon. Palladium acetate (0.494
g; 0.025 eq.) was added and the mixture was refluxed for 18
hours. The two phases were then separated and the aqueous
phase was extracted with ethyl acetate (3X 250 mL). The com-
bined organic phases were washed with water (250 mL) and
brine (250 mL) and were dried over MgSO4. After evaporation
of the solvent, the oily residue was purified by bulb-to-bulb di-
stillation (110°C, 1 mbar) to afford 11.15 g of pure 2-phenyl-
pyridine (81 %).
(8) Title compounds have been prepared by numerous methods,
few of them being selective and none of them being attractive
for large scale synthesis; via Grignard addition to 1-(alkoxy-
carboxy)-pyridinium salts: Webb, T. R. Tetrahedron Lett.
1985, 26, 3191; via nucleophilic addition of aryl Grignard or
copper reagents at the 2- or 4-position of pyridine, followed by
oxidation of the resulting dihydropyridines: Comins, D. L.;
Smith, R. K.; Stround, E. D. Heterocycles 1984, 22, 339; via
diethyl(4-pyridyl)borane: Ishikura, M.; Ohta, T.; Terashima,
M. Chem. Pharm. Bull. 1985, 33, 4755; via palladium cross-
coupling using tin reagents (Stille coupling) or bromopyri-
dines.6
(9) For a recent review on catalytic cross-coupling reactions in
biaryl synthesis, see: Stanforth, S. P. Tetrahedron 1998, 54,
263. For a review on Suzuki coupling, see: Miyaura, N.;
Suzuki, A. Chem. Rev. 1995, 95, 2457.
(10) The low reactivity of aryl chlorides in cross-coupling reac-
tions is generally ascribed to their reluctance to oxidatively
add to Pd(0). For discussions, see: a) Grushin, V. V.; Alper, H.
Chem. Rev. 1994, 94, 1047. b) Reference 9.
(18) Fitton, P.; Rick, E. A. J. Organomet. Chem. 1971, 28, 287.
(19) Lohse, O. Synth. Commun. 1996, 26, 2017.
(20) Wright, S. W.; Hageman, D. L.; McClure, L. D. J. Org. Chem.
1994, 59, 6095.
(21) a) Wallow, T. I.; Novak, B. M. J. Org. Chem. 1994, 59, 5034.
b) Moreno-Mañas, M.; Pajuelo, F.; Pleixats, R. J. Org. Chem.
1995, 60, 2396.
(22) a) Catalyst inhibition upon addition of pyridine has been ob-
served in the Pd(0)/P(o-tolyl)3 catalysed amination of aryl bro-
mides: Wagaw, S.; Buchwald, S. L. J. Org. Chem. 1996, 61,
7240. b) For an example of a cationic palladium/dipicolinate
complex, see: Espinet, P.; Miguel, J. A.; Garcia-Granda, S.;
Miguel, D. Inorg. Chem. 1996, 35, 2287. c) Curiously, no
change of colour was observed upon addition of N-methyl 4-
chloropicolinamide to a toluene or DME solution of
Pd2(dba)3. When P(o-tolyl)3 was subsequently added, the
colour of the solution changed, indicating the formation of a
palladium-phosphine complex.
(11) The order of reactivity of the aryl halides (I > Br >> Cl) to-
wards addition to Pd(PPh3)4 suggests that this has some simi-
larity to aromatic nucleophilic substitution in which breaking
of the bond to the leaving group is rate determining.10,18 One
would therefore predict that the presence of electron-with-
drawing groups would increase the overall reaction rate. Some
bicyclic heteroaryl chlorides may be regarded as specially ac-
tivated.12a For example, 2-chloroquinoline and 2-chloropyri-
midine react 3x102 and 7x105 times faster than 2-
chloropyridine for nucleophilic displacement with EtO-, re-
Synlett 1999, No. 1, 45–48 ISSN 0936-5214 © Thieme Stuttgart · New York