THIMMA SAMBAMOORTHY ET AL.
11 of 12
[4] For reviews, see:a) A. de Meijere, F. Diederich, Metal‐Catalyzed
Cross‐Coupling Reactions, 2nd ed., John Wiley, Weinheim 2004.
b)H. Surburg, J. Panten, Common Fragrance and Flavor Mate-
rials, 5th ed., Wiley‐VCH, Weinheim 2006.
phenylboronic acid, which further undergoes reductive
elimination affording the desired coupled product E.
Likewise, the reaction of B′ with base followed by
transmetalation of B′ furnishes the intermediate C′.
Eventually, D′ is obtained from the reductive elimination
of C′ and regenerates Pd(II) species A.
[5] N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457.
[6] a) J. K. Stille, Angew. Chem. Int. Ed. 1986, 25, 508. b) V. Farina,
V. Krishnamurthy, W. J. Scott, Org. React. 1997, 50, 1.
[7] F. Ullmann, J. Bielecki, Ber. Dtsch. Chem. Ges. 1901, 34, 2147.
4 | CONCLUSIONS
[8] R. Rossi, F. Bellina, A. Carpita, F. Mazzarella, Tetrahedron
1996, 52, 4095.
A simple synthetic route to palladium(II) thiourea com-
plexes and their characterization have been described.
The catalytic performances of the complexes were well
explored for the SMC reaction affording products in good
to excellent yields in aqueous–organic media at low cata-
lyst loadings (0.5–0.1 mol%). Simple and greener SMC
reactions with a broad range of aryl bromides and aryl
chlorides, including aromatic and heteroaromatic ones,
were developed using the palladium(II) thiourea com-
plexes. Further, a successful attempt was also made in
the synthesis of aryl ketone derivatives from aryl esters
and arylboronic acids by exploiting the Pd(II) thiourea
complexes with 1 mol% catalyst loading in 20 h.
[9] M. F. Semmelhack, P. Helquist, L. D. Jones, L. Keller, L.
Mendelson, L. S. Ryono, J. G. Smith, R. D. Stauffer, J. Am.
Chem. Soc. 1981, 103, 6460.
[10] B. M. Trost, T. R. Verhoeven, Comprehensive Organic Chemis-
try, Vol. 8, Pergamon, Oxford 1982 799.
[11] T. G. Gant, A. I. Meyers, Tetrahedron 1994, 50, 2297.
[12] B. H. Lipshutz, F. Kayser, Z. P. Liu, Angew. Chem. 1994, 106,
1962.
[13] Z. Rappoport, The Chemistry of Phenols, John Wiley, Chichester
2003.
[14] a) P. Lei, G. Meng, S. Shi, Y. Ling, J. An, R. Szostak, M. Szostak,
Chem. Sci. 2017, 8, 6525. b) J. Buchspies, M. Szostak, Catalysts
2019, 9, 53.
[15] a) D. A. Shirley, Org. React. 1954, 8, 28. b) S. Nahm, S. M.
Weinreb, Tetrahedron Lett. 1981, 22, 3815.
ACKNOWLEDGEMENTS
[16] For examples containing only 2‐pyridyl esters see: H.
Tatamidani, F. Kakiuchi, N. Chatani, Org. Lett. 2004, 6, 3597.
The authors are grateful to the Science and Engineering
Research Board (SERB) (scheme no. SR/S1/IC‐48/2012)
for providing financial support and for Junior Research
Fellowship to T.S.M. We are also grateful to the
DST‐India (FIST programme) for the use of instrumental
facilities at the School of Chemistry, Bharathidasan Uni-
versity, India.
[17] For examples containing unactivated aryl esters see: a) T.
BenHalima, W. Zhang, I. Yalaoui, X. Hong, Y. –. F. Yang, K.
N. Houk, S. G. Newman, J. Am. Chem. Soc. 2017, 139, 1311.
b) T. BenHalima, J. K. Vandavasi, M. Shkoor, S. G. Newman,
ACS Catal. 2017, 7, 2176. c) C. A. Malapit, D. R. Caldwell, N.
Sassu, S. Milbin, A. R. Howell, Org. Lett. 2017, 19, 1966. d) S.
Shi, P. Lei, M. Szostak, Organometallics 2017, 36, 3784. e) S.
Shi, M. Szostak, Chem. Commun. 2017, 53, 10584.
[18] For examples containing methyl esters see: L. Hie, N. F. Fine
Nathel, X. Hong, Y.‐F. Yang, K. N. Houk, N. K. Garg, Angew.
Chem. Int. Ed. 2016, 55, 2810.
ORCID
[19] a) K. Amaike, K. Muto, J. Yamaguchi, K. Itami, J. Am. Chem.
Soc. 2012, 134, 13573. b) K. Muto, J. Yamaguchi, D. G. Musaev,
K. Itami, Nat. Commun. 2015, 6, 7508. c) N. A. LaBerge, J. A.
Love, Eur. J. Org. Chem. 2015, 2015, 5546. d) L. Guo, A.
Chatupheeraphat, M. Rueping, Angew. Chem. Int. Ed. 2016,
55, 11810. e) X. Pu, J. Hu, Y. Zhao, Z. Shi, ACS Catal. 2016,
6, 6692. f) K. Muto, T. Hatakeyama, K. Itami, J. Yamaguchi,
Org. Lett. 2016, 18, 5106. g) X. Liu, J. Jia, M. Rueping, ACS
Catal. 2017, 7, 4491.
REFERENCES
[1] a) G. Bringmann, C. Gunther, M. Ochse, O. Schupp, S. Tasler,
Biaryls in nature: a multi‐faceted class of stereochemically, bio-
synthetically, and pharmacologically intriguing secondary
metabolites, in Progress in the Chemistry of Organic Natural
Products, (Eds: W. Herz, H. Falk, G. W. Kirby, R. E. Moore)
Vol. 1, Springer, Vienna 2001. b) J. Hassan, M. Sevignon, C.
Gozzi, E. Schulz, M. Lemaire, Chem. Rev. 2010, 102, 1359. c)
D. A. Horton, G. T. Bourne, M. L. Smythe, Chem. Rev. 2003,
103, 893. d) G. Bringmann, A. J. Price Mortimer, P. A. Keller,
M. J. Gresser, J. Garner, M. Breuning, Angew. Chem. Int. Ed.
2005, 44, 5384.
[20] A. Shakeel, A. A. Altaf, A. M. Qureshi, A. Badshah, J. Drug
Design Med. Chem. 2016, 2(1), 10.
[21] a) S. Muthumari, R. Ramesh, RSC Adv. 2016, 6, 52101. b) E.
Sindhuja, R. Ramesh, S. Balaji, Y. Liu, Organometallics 2014,
33, 4269. c) S. Saranya, R. Ramesh, J. G. Malecki, Eur. J.
Org. Chem. 2017, 2017, 6726. d) T. S. Manikandan, R.
Ramesh, S. Naveen, K. Lokanath Neratur, ChemistrySelect
2018, 3, 1561.
[2] A. Suzuki, J. Organometal. Chem. 1999, 576, 147.
[3] M. Simonetti, D. M. Cannas, I. Larrosa, Adv. Organometal.
Chem. 2017, 67, 299.