290
Y. Masaki et al.
LETTER
(4) (a) Anastas, P. T.; Warner, J. C. Green Chemistry, Theory
and Practice; Oxford Press: New York, 1998. (b)Poliakoff,
M.; Anastas, P. T. Nature (London) 2001, 413, 257.
(5) For recent reviews, see: (a) de Miguel, Y. R.; Brule, E.;
Margue, R. G. J. Chem. Soc., Perkin Trans. 1 2001, 3085.
(b) van Heerbeek, R.; Kamer, P. C. J.; van Leeuwen, P. M.
N. M.; Reek, J. N. H. Chem. Rev. 2002, 102, 3717.
(c) Clapham, B.; Reger, T. S.; Janda, K. D. Tetrahedron
2001, 57, 4637. (d) Benaglia, M.; Puglisi, A.; Cozzi, F.
Chem. Rev. 2003, 103, 3401. (e) Kobayashi, S.; Akiyama,
R. Chem. Commun. 2003, 449.
(6) (a) Masaki, Y.; Miura, T. Tetrahedron Lett. 1994, 35, 7961.
(b) Masaki, Y.; Miura, T. Tetrahedron 1995, 51, 10477.
(c) Miura, T.; Masaki, Y. J. Chem. Soc., Perkin Trans. 1
1994, 1659. (d) Miura, T.; Masaki, Y. J. Chem. Soc., Perkin
Trans. 1 1995, 215. (e) Masaki, Y.; Miura, T. Synth.
Commun. 1995, 25, 1981. (f) Masaki, Y.; Tanaka, N.;
Miura, T. Chem. Lett. 1997, 55.
Table 2 Three-Component IED-Aza-Diels–Alder Reaction Cata-
lyzed by Poly-DCKA-1 in Water and under Solvent-Free Conditions
poly-DCKA-1
(0.2 equiv)
9a (syn)
+
PhCHO + PhNH2 + 8
H2O or no solvent
r.t., 24 h
9b (anti)
(1 equiv) (1 equiv)
Solvent
H2O
–
8 (equiv)
Yield (%)
9a/9b
6.0
11
73
61
85:15
84:16
Table 3 Application of Recycled Poly-DCKA-1
poly-DCKA-1
(0.2 equiv)
1 + 8 (6 equiv)
9a (syn) + 9b (anti)
(7) (a) Masaki, Y.; Tanaka, N.; Miura, T. Tetrahedron Lett.
1998, 39, 5799. (b) Tanaka, N.; Miura, T.; Masaki, Y.
Chem. Pharm. Bull. 2000, 48, 1010. (c) Tanaka, N.;
Masaki, Y. Synlett 1999, 1277. (d) Tanaka, N.; Masaki, Y.
Synlett 2000, 406. (e) Tanaka, N.; Masaki, Y. Synlett 1999,
1960. (f) Masaki, Y.; Yamada, T.; Tanaka, N. Synlett 2001,
1311.
H2O, r.t., 24 h
Cycle
1st
2nd
74
3rd
Yield (%)
9a/9b
71
73
84:16
86:14
85:15
(8) (a) Padwa, A. Progress in Heterocyclic Chemistry, Vol. 7;
Suschitzky, H.; Scriven, E. F. V., Eds.; Pergamon Press:
Oxford, 1995, 21. (b) Kobayashi, S.; Ishitani, H.;
Nagayama, S. Synthesis 1995, 1195. (c) Boger, D. L.
Tetrahedron 1983, 39, 2869. (d) Weinreb, D. L.; Staib, R.
R. Tetrahedron 1982, 38, 3087.
(9) (a) Povarov, L. S. Russ. Chem. Rev. 1967, 36, 656.
(b) Yamamoto, H. Lewis Acids in Organic Synthesis; Wiley-
VCH: New York, 2000.
(10) (a) Yamada, N.; Kadowaki, S.; Takahashi, K.; Umezu, K.
Biochem. Pharmacol. 1992, 44, 1211. (b) Faber, K.;
Stueckler, H.; Kappe, T. Heterocycl. Chem. 1984, 21, 1177.
(c) Johnson, J. V.; Rauckman, S.; Baccanari, P. D.; Roth, B.
J. Med. Chem. 1989, 32, 1942. (d) Ramesh, M.; Moham, P.
S.; Shanmugam, P. Tetrahedron 1984, 40, 4041.
environments of condensed areas for the active part of the
catalyst, DCKA portion. The microenvironment might
enhance the local concentration of the lipophilic substrate
by positive incorporation from the aqueous media through
a hydrophobic interaction of the substrate and the catalyst,
resulting in rate acceleration and higher syn/anti stereo-
selectivity.
In conclusion, a polymer-supported DCKA (poly-DCKA-
1) was found to be a proton-free, metal-free, and recycla-
ble catalyst for the IED-aza-Diels–Alder reaction at room
temperature in water and under solvent free conditions.
(11) (a) Zigang, L.-C.; Li, C.-J. Synlett 2003, 732. (b) Li, Z.;
Zhang, J.; Li, C.-J. Tetrahedron Lett. 2003, 44, 153.
(c) Zhang, J.; Li, C.-J. J. Org. Chem. 2002, 67, 3969.
(12) Masaki, Y.; Yamazaki, K.; Kawai, H.; Yamada, T.; Itoh, A.;
Arai, Y.; Furukawa; H. Chem. Lett. submitted.
Acknowledgment
This work was supported in part by a Grant-in-Aid from Japan
Society of the Promotion of Science to whom the authors are
grateful.
(13) Middleton, W. J.; Engelhardt, V. A. J. Am. Chem. Soc. 1958,
80, 2788.
(14) Danishefsky, S. Acc. Chem. Res. 1981, 14, 400.
(15) Middleton, W. J.; Heckert, R. E.; Little, E. L.; Krespan, C.
G. J. Am. Chem. Soc. 1958, 80, 2783.
References and Notes
(16) The 9a(syn)/9b(anti) ratio was determined by 1H NMR
analysis based on the following publication: Ma, Y.; Qian,
C.; Xie, M.; Sun, J. J. Org. Chem. 1999, 64, 6462.
(17) Typical Procedure To a mixture of benzylideneaniline (453
mg, 2.5 mmol) and poly-DCKA-1 (189 mg, 0.5 mmol equiv)
in H2O (5.0 mL), was added 3,4-dihydro-4H-pyran (1.26 g,
15 mmol) at r.t., and the mixture was stirred for 24 h. EtOAc
was added, the poly-DCKA-1 was removed by filtration, and
the filtrate was extracted with EtOAc. The organic layer was
washed with H2O, dried over anhyd MgSO4, and concen-
trated in vacuo to give the crude product, which was purified
by column chromatography on silica gel (hexane–EtOAc) to
give pure diastereoisomers 9a (404 mg, 60%) and 9b (64
mg, 11%).
(1) (a) Li, C.-J.; Chan, T.-H. Organic Reactions in Aqueous
Media; John Wiley & Sons: New York, 1997. (b) Organic
Synthesis in Water; Grieco, P. A., Ed.; Blackie Academic
and Professional: London, 1998. (c) Lindstrom, U. M.
Chem. Rev. 2002, 102, 2751. (d) Li, C.-J. Chem. Rev. 2005,
105, 3095.
(2) (a) Tanaka, K.; Toda, F. Chem. Rev. 2000, 100, 1025.
(b) Balema, V. P.; Wiench, J. W.; Pruski, M.; Pecharsky, V.
K. J. Am. Chem. Soc. 2002, 124, 6244.
(3) For recent reviews, see: (a) Shettleworth, S. J.; Allin, S. M.;
Sharma, P. K. Synthesis 1997, 1217. (b) Shettleworth, S. J.;
Allin, S. M.; Richard, R. D.; Nasturica, N. Synthesis 2000,
1035. (c) Ley, S. V.; Baxendale, I. R.; Bream, R. N.;
Jackson, P. S.; Leach, A. G.; Longbottom, D. A.; Nesi, M.;
Scott, J. S.; Storer, I. S.; Taylor, S. J. J. Chem. Soc., Perkin
Trans. 1 2000, 3815. (d) Gladysz, J. A. Chem. Rev. 2002,
102, 3215. (e) Bioorg. Med. Chem. Lett. 2002, 12, 1791.
(18) The catalyst poly-DCKA-1 was recovered by filtration from
the reaction mixture followed by washing successively with
H2O and EtOAc, and drying in vacuo at r.t. for 4 h.
Synlett 2006, No. 2, 288–290 © Thieme Stuttgart · New York