LETTER
Ligand-Accelerated Cadmium-catalyzed Allylation
485
Table 3 Cadmium-Catalyzed Allylation of Aldehydes and Ketones
(2) For review see: (a) Lubineau, A.; Auge, J.; Queneau, Y. In
Organic Synthesis in Water; Grieco, P. A., Ed.; Blackie
Academic and Professional: London, 1998, 102. (b) Li, C.-
J.; Chan, T.-H. Organic Reactions in Aqueous Media; John
Wiley & Sons: New York, 1997.
Cd(ClO4)2 (20 mol %)
O
ligand (20 mol %)
OH
+
Bu3Sn
R'
R''
R'
R''
H2O/EtOH = 1/9
(
3) (a) Shibata, I.; Yoshimura, N.; Yabu, M.; Baba, A. Eur. J.
Org. Chem. 2001, 3207. (b) Loh, T.-P.; Xu, J.; Hu, Q.-Y.;
Vittal, J. J. Tetrahedron: Asymmetry 2000, 11, 1565.
30 °C
Entry Substrate
1
Time (h)
0.5
Ligand
Yield (%)
(
c) Loh, T.-P.; Zhou, J.-R. Tetrahedron Lett. 2000, 41,
5261. (d) Loh, T.-P.; Xu, J. Tetrahedron Lett. 1999, 40,
431. (e) Yanagisawa, A.; Morodome, M.; Nakashima, H.;
5
97
CHO
2
Yamamoto, H. Synlett 1997, 1309. (f) Yanagisawa, A.;
Nakashima, H.; Ishiba, A.; Yamamoto, H. J. Am. Chem. Soc.
2
0.5
10
2b
2b
86
98
1996, 118, 4723.
CHO
(
4) (a) Kobayashi, S.; Hamada, T.; Nagayama, S.; Manabe, K. J.
Brazil. Chem. Soc. 2001, 12, 627. (b) Kobayashi, S.;
O
3
CHO
OH
Hamada, T.; Nagayama, S.; Manabe, K. Org. Lett. 2001, 3,
165. (c) Nagayama, S.; Kobayashi, S. J. Am. Chem. Soc.
2000, 122, 11531. (d) Kobayashi, S.; Nagayama, S.;
Busujima, T. Chem. Lett. 1999, 71. (e) Kobayashi, S.;
Nagayama, S.; Busujima, T. Tetrahedron 1999, 55, 8739.
5) (a) Hachiya, I.; Kobayashi, S. J. Org. Chem. 1993, 58, 6958.
4
0.5
42
2b
5
91
93
CHO
O
(
(
b) Kobayashi, S.; Wakabayashi, T.; Oyamada, H. Chem.
5a
Lett. 1997, 831. (c) We have also developed allylation of
hydrazones or imines with allyltins in aqueous media:
Kobayashi, S.; Hamada, T.; Manabe, K. Synlett 2001, 1140.
(
d) See also: Kobayashi, S.; Busujima, T.; Nagayama, S.
6a
7b
48
48
2b
2b
94
90
Chem. Commun. 1998, 19.
O
O
(
6) Zheng, Y.; Bao, W.; Zhang, Y. Synth. Commun. 2000, 30,
3
517.
(
7) For example, see: (a) Prajapati, D.; Sandhu, J. S. J. Chem.
Soc., Perkin Trans. 1 1993, 739. (b) Baruah, B.; Boruah, A.;
Prajapati, D.; Sandhu, J. S. Tetrahedron Lett. 1997, 38,
1449. (c) Laskar, D. D.; Prajapati, D.; Sandhu, J. S. Chem.
Lett. 1999, 1283. (d) Evans, D. A.; Miller, S. J.; Lectka, T.;
von Matt, P. J. Am. Chem. Soc. 1999, 121, 7559. (e) Saito,
M.; Nakajima, M.; Hashimoto, S. Chem. Commun. 2000,
a
Allyltributyltin (2 equiv) was used.
Allyltributyltin (3 equiv) was used.
b
1851. (f) Saito, M.; Nakajima, M.; Hashimoto, S.
Tetrahedron 2000, 56, 9589.
8) For review, see: Berrisford, D. J.; Bolm, C.; Sharpless, K. B.
Angew. Chem. Int. Ed. Engl. 1995, 34, 1059.
(9) Hamasaki, R.; Chounan, Y.; Horino, H.; Yamamoto, Y.
Tetrahedron Lett. 2000, 41, 9883.
10) For other examples of catalytic allylation reactions of
ketones with allyltins, see: (a) Kosugi, M.; Arai, H.;
Yoshino, A.; Migita, T. Chem. Lett. 1978, 795. (b) Yano,
K.; Hatta, Y.; Baba, A.; Matsuda, H. Synlett 1991, 555.
In conclusion, we have discovered that cadmium
perchlorate catalyzes allylation reactions using allyltribu-
tyltin in aqueous media very efficiently. These cadmium-
catalyzed allylation reactions are accelerated by ligands
such as 2b or 5. This accelerated catalytic system gave al-
lylation products of various aldehydes and ketones in high
yields. As far as we know, this is the first example of allyl-
ation of ketones using allyltributyltin in aqueous media.
Although the mechanism of the reaction and the ligand ac-
celeration is not clear, it must be emphasized that slight
changes of ligand structure drastically alter the catalytic
activity of the metal. Further investigation on diastereo-
and enantioselective allylation reactions in aqueous media
using this novel catalyst system and elucidation of the
mechanism of the ligand acceleration are currently in
progress in our laboratory.
(
(
(
c) Miyai, T.; Inoue, K.; Yasuda, M.; Baba, A. Synlett 1997,
699. (d) Shibata, I.; Fukuoka, S.; Yoshimura, N.; Matsuda,
H.; Baba, A. J. Org. Chem. 1997, 62, 3790. (e) Yasuda, M.;
Tsuchida, M.; Baba, A. Chem. Commun. 1998, 563.
(
f) Yasuda, M.; Kitahara, N.; Fujibayashi, T.; Baba, A.
Chem. Lett. 1998, 743. (g) Kamble, R. M.; Singh, V. K.
Tetrahedron Lett. 2001, 42, 7525. (h) Casclari, S.;
D’Addario, D.; Tagliavini, E. Org. Lett 1999, 1, 1061.
(i) Hanawa, H.; Kii, S.; Maruoka.K. Adv. Synth. Catal. 2001,
343, 57.
(
11) For review, see: (a) Denmark, S. E.; Almstead, N. G. In
Modern Carbonyl Chemistry; Otera, J., Ed.; Wiley-VCH:
Weinheim, 2000, 299. (b) Marshall, J. A. In Lewis Acids in
Organic Synthesis; Yamamoto, H., Ed.; Wiley-VCH:
Weinheim, 2000, 453.
12) There are a few examples of ligand-accelerated Lewis acid
catalysis in dry solvents, although the Lewis basicities of the
ligands used there are much lower than those of amine-based
ligands such as 2b and 5. See: (a) Denmark, S. E.; Fu, J. J.
Am. Chem. Soc. 2001, 123, 9488. (b) Kobayashi, S.;
Ogawa, C.; Kawamura, M.; Sugiura, M. Synlett 2001, 983.
Acknowledgement
This work was partially supported by a Grant-in-Aid for Scientific
Research from Japan Society of the Promotion of Science.
(
References
(1) For review see: Yamamoto, Y.; Asao, N. Chem. Rev. 1993,
93, 2207.
Synlett 2002, No. 3, 483–485 ISSN 0936-5214 © Thieme Stuttgart · New York