264
N. Panda et al. / Applied Catalysis A: General 433–434 (2012) 258–264
the first time. The magnetic nature of CuFe2O4 nanoparticles offers
an advantage for easy, quick and quantitative separation of the het-
erogeneous catalyst from the reaction mixture. The use of CuFe2O4
nanoparticles for above cross-coupling reactions is found to be eco-
nomic. Furthermore, the negligible leaching of Fe and Cu to reaction
medium makes the reaction environmentally safe and thus may be
adopted by the industries for large-scale syntheses.
[22] T. Neuberger, B. Schoepf, H. Hofmann, M. Hofmann, B. von Rechenberg, J. Magn.
Magn. Mater. 293 (2005) 483–496.
[23] J.M. Perez, F.J. Simeone, Y. Saeki, L. Josephson, R. Weissleder, J. Am. Chem. Soc.
125 (2003) 10192–10193.
[24] D.L. Graham, H.A. Ferreira, P.P. Freitas, Trends Biotechnol. 22 (2004) 455–462.
[25] D. Wang, J. He, N. Rosenzweig, Z. Rosenzweig, Nano Lett. 4 (2004) 409–413.
[26] C. Xu, K. Xu, H. Gu, R. Zheng, H. Liu, X. Zhang, Z. Guo, B. Xu, J. Am. Chem. Soc.
126 (2004) 9938–9939.
[27] R. Hiergeist, W. Andra, N. Buske, R. Hergt, I. Hilger, U. Richter, W. Kaiser, J. Magn.
Magn. Mater. 201 (1999) 420–422.
[28] A. Jordan, R. Scholz, P. Wust, H. Fahling, R. Felix, J. Magn. Magn. Mater. 201
(1999) 413–419.
Acknowledgements
[29] V. Polshettiwar, B. Baruwati, R.S. Varma, Chem. Commun. (2009) 1837–1839.
[30] M. Shibasaki, M. Kanai, Chem. Rev. 108 (2008) 2853–2873.
[31] M. Meldal, C.W. Tornoe, Chem. Rev. 108 (2008) 2952–3015.
[32] S. Jammi, S. Sakthivel, L. Rout, T. Mukherjee, S. Mandal, R. Mitra, P. Saha, T.
Punniyamurthy, J. Org. Chem. 74 (2009) 1971–1976.
Authors are thankful to DST (SR-S1/OC-60/2011) Govt. of India
for financial support.
[33] K. Swapna, S. Narayana Murthy, Y.V.D. Nageswar, Eur. J. Org. Chem. (2011)
1940–1946.
Appendix A. Supplementary data
[34] N. Panda, A.K. Jena, S. Mohapatra, S.R. Rout, Tetrahedron Lett. 52 (2011)
1924–1927.
[35] N. Panda, A.K. Jena, S. Mohapatra, Chem. Lett. 40 (2011) 956–958.
[36] S. Mohapatra, S.R. Rout, A.B. Panda, Coll. Surf. A Physicochem. Eng. Asp. 384
(2011) 453–460.
Supplementary data associated with this article can be
[37] R.L. Penn, J.F. Banfield, Science 281 (1998) 969–971.
[38] J.F. Banfield, S.A. Welch, H. Zhang, T.T. Ebert, R.L. Penn, Science 289 (2000)
751–754.
References
[39] R.L. Penn, G.O. Timothy, J. Strathmann, P.C. Searson, A.T. Stone, D.R. Veblen, J.
Phys. Chem. B 105 (2001) 2177–2182.
[40] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T.
Sieminiewska, Pure Appl. Chem. 57 (1985) 603–619.
[1] A.R. Muci, S.L. Buchwald, Top. Curr. Chem. 219 (2002) 131–209.
[2] F. Diederich, A. de Meijere (Eds.), Metal-Catalyzed Cross-Coupling Reactions,
Wiley-VCH, Weinheim, 2004.
[3] J.F. Hartwig, Synlett (2006) 1283–1294.
[41] M.M. Rashad, R.M. Mohamed, M.A. Ibrahim, L.F.M. Ismail, E.A. Abdel-Aal, Adv.
[42] B. Marrtinz, X. Obradors, L.I. Balcells, A. Rouanet, C. Monty, Phys. Rev. Lett. 80
(1998) 181–184.
[43] A. Correa, M. Carril, C. Bolm, Angew. Chem. Int. Ed. 47 (2008) 2880–2883.
[44] X. Ku, H. Huang, H. Jiang, H. Liu, J. Comb. Chem. 11 (2009) 338–340.
[45] M.C. Bagley, M.C. Dix, V. Fusillo, Tetrahedron Lett. 50 (2009) 3661–3664.
[46] D.J.C. Prasad, A.B. Naidu, G. Sekar, Tetrahedron Lett. 50 (2009) 1411–1415.
[47] H.-J. Xu, Y.-F. Liang, X.-F. Zhoua, Y.-S. Feng, Org. Biomol. Chem. 10 (2012)
2562–2568.
[48] J.M. Klunder, K.D. Hargrave, M. West, E. Cullen, K. Pal, M.L. Behnke, S.R. Kapadia,
D.W. McNeil, C. Wu, G.C. Chow, J. Adams, J. Med. Chem. 35 (1992) 1887.
[49] J. Cairns, S.G. Gibson, D.R. Rae, EP 468862, 1992.
[50] M. Binaschi, A. Boldetti, M. Gianni, C.A. Maggi, M. Gensini, M. Bigioni, M. Parlani,
A. Giolitti, M. Fratelli, C. Valli, M. Terao, E. Garattini, ACS Med. Chem. Lett. 1
(2010) 411–415.
[4] T. Kondo, T. Mitsudo, Chem. Rev. 100 (2000) 3205–3220.
[5] I.P. Beletskaya, V.P. Ananikov, Chem. Rev. 111 (2011) 1596–1636.
[6] C.C. Eichman, J.P. Stambuli, Molecules 16 (2011) 590.
[7] S.V. Ley, A.W. Thomas, Angew. Chem. Int. Ed. 42 (2003) 5400–5449.
[8] V.I. Sorokin, Mini-Rev. Org. Chem. 5 (2008) 323–330.
[9] I.P. Beletskaya, A.V. Cheprakov, Coord. Chem. Rev. 248 (2004) 2337.
[10] Y.-B. Huang, C.-T. Yang, J. Yi, X.-J. Deng, Y. Fu, L. Liu, J. Org. Chem. 76 (2011)
800–810, and references therein.
[11] A. Molnar, Chem. Rev. 111 (2011) 2251–2320.
[12] E. Sperotto, G.P.M. van Klink, J.G. de Vries, G. van Koten, J. Org. Chem. 73 (2008)
5625–5628.
[13] Y.-S. Feng, Y.-Y. Li, L. Tang, W. Wua, H.-J. Xu, Tetrahedron Lett. 51 (2010)
2489–2492.
[14] C. Gonzalez-Arellano, R. Luque, D.J. Macquarrie, Chem. Commun. (2009)
1410–1412.
[15] L. Rout, T.K. Sen, T. Punniyamurthy, Angew. Chem. Int. Ed. 46 (2007) 5583–5586.
[16] B.C. Ranu, A. Saha, R. Jana, Adv. Synth. Catal. 349 (2007) 2690–2696.
[17] S. Bhadra, B. Sreedhar, B.C. Ranu, Adv. Synth. Catal. 351 (2009) 2369.
[18] C.W. Lim, I.S. Lee, Nano Today 5 (2010) 412–434.
[19] V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J.-M. Basset, Chem. Rev.
111 (2011) 3036–3075.
[20] Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, J. Phys. D Appl. Phys. 36 (2003)
R167–R181.
[21] A.K. Gupta, A.S.G. Curtis, J. Mater. Sci. Mater. Med. 15 (2004) 493–496.
[51] H. Pettersson, A. Bulow, F. Ek, J. Jensen, L.K. Otteson, A. Fejzic, J.-N. Ma, A.L. Del
Tredici, E.A. Currier, L.R. Gardell, A. Tabatabaei, D. Craig, K. McFarland, T.R. Ott,
F. Piu, E.S. Burstein, R. Olsson, J. Med. Chem. 52 (2009) 1975–1982.
[52] K. Rogers, H. Patzke, PCT Int. Appl. WO 2009137462 A2 20091112 (2009).
[53] A.M. Bhobe, Y. Singh, T.S. Prabhavalkare, B.V. Natraj, Indian Pat. Appl. IN
2008MU00821 A 20091030 (2009).
[54] B. Martinez, X. Obradors, L.I. Balcells, A. Rouanet, C. Monty, Phys. Rev. Lett. 80
(1998) 181–184.