10.1002/chem.201900162
Chemistry - A European Journal
FULL PAPER
Angew. Chem. Int. Ed. 2013, 52, 12385; d) J. Zhao, K. Oniwa, N. Asao,
Y. Yamamoto, T. Jin, J. Am. Chem. Soc. 2013, 135, 10222; e) V. P.
Mehta, J.-A. García-López, M. F. Greaney, Angew. Chem. 2014, 126,
1555; Angew. Chem. Int. Ed. 2014, 53, 1529; f) Y. Deng, W. Gong, J. He,
J.-Q. Yu, Angew. Chem. 2014, 126, 6810; Angew. Chem. Int. Ed. 2014,
53, 6692; g) S. P. Cooper, K. I. Booker-Milburn, Angew. Chem. 2015,
127, 6596; Angew. Chem. Int. Ed. 2015, 54, 6496; h) T. Li, Z. Wang, M.
Zhang, H.-J. Zhang, T.-B. Wen, Chem. Commun. 2015, 51, 6777; i) K. K.
Gollapelli, S. Kallepu, N. Govindappa, J. B. Nanubolu, R. Chegondi,
Chem. Sci. 2016, 7, 4748; j) B. Zhang, B. Li, X. Zhang, X. Fan, Org. Lett.
2017, 19, 2294; k) M. Hu, L.-Y. Guo, Y. Han, F.-L. Tan, R.-J. Song, J.-H.
Li, Chem. Commun. 2017, 53, 6081; l) K. Mukherjee, M. Shankar, K.
Ghosh, A. K. Sahoo, Org. Lett. 2018, 20, 1914; m) J. F. Rodríguez, K. I.
Burton, I. Franzoni, D. A. Petrone, I. Scheipers, M. Lautens, Org. Lett.
2018, 20, 6915.
Echavarren, I. Alonso, N. Rodríguez, R. Gómez Arrayás, J. C. Carretero,
Chem. Sci. 2015, 6, 5802; f) X. Li, X. Yang, Z. Qi, ACS Catal. 2016, 6,
6372; g) L. Wang, Y. Yu, M. Yang, C. Kuai, D. Cai, J. Yu, X. Cui, Adv.
Synth. Catal. 2017, 359, 3818; h) R. Thenarukandiyil, C. Dutta, J.
Choudhury, Chem. Eur. J. 2017, 23, 15529; i) A. Biswas, D. Giri, D. Das,
A. De, S. K. Patra, R. Samanta, J. Org. Chem. 2017, 82, 10989; j) K. R.
Bettadapur, R. Kapanaiah, V. Lanke, K. R. Prabhu, J. Org. Chem. 2018,
83, 1810; k) X. Xu, H. Zhao, J. Xu, C. Chen, Y. Pan, Z. Luo, Z. Zhang, H.
Li, L. Xu, Org. Lett. 2018, 20, 3843. For the Pd-catalyzed version: l) M.
Yamashita, H. Horiguchi, K. Hirano, T. Satoh, M. Miura, J. Org. Chem.
2009, 74, 7481; m) P. Annamalai, W.-Y. Chen, S. Raju, K.-C. Hsu, N. S.
Upadhyay, C.-H. Cheng, S.-C. Chuang, Adv. Synth. Catal. 2016, 358,
3642; n) O. S. Kim, J. H. Jang, H. T. Kim, S. J. Han, G. C. Tsui, J. M. Joo,
Org. Lett. 2017, 19, 1450.
[11] D.-G. Yu, F. de Azambuja, T. Gensch, C. G. Daniliuc, F. Glorius, Angew.
Chem. 2014, 126, 9804; Angew. Chem. Int. Ed. 2014, 53, 9650.
[12] a) S. Kathiravan, I. A. Nicholls, Org. Lett. 2017, 19, 4758; b) M. Sen, R.
Mandal, A. Das, D. Kalsi, B. Sundararaju, Chem. Eur. J. 2017, 23, 17454.
[13] For 1,3-diyne annulation via electrophilic substitution or decarboxylation:
a) J. Mo, D. Eom, E. Lee, P. H. Lee, Org. Lett. 2012, 14, 3684; b) J. Mo,
W. Choi, J. Min, C.-E. Kim, D. Eom, S. H. Kim, P. H. Lee, J. Org. Chem.
2013, 78, 11382; c) M. Itoh, M. Shimizu, K. Hirano, T. Satoh, M. Miura,
J. Org. Chem. 2013, 78, 11427. For the use of 1,3-diynes in C–H
activation involving a single annulation: d) D. Y. Li, H. J. Chen, P. N. Liu,
Org. Lett. 2014, 16, 6176.
[3]
[4]
P.-F. Xu, H. Wei, in Catalytic Cascade Reactions, Wiley, Hoboken, 2013,
pp. 283-331.
For reviews on the synthesis of extended -systems via C–H activation:
a) Y. Segawa, T. Maekawa, K. Itami, Angew. Chem. 2015, 127, 68;
Angew. Chem. Int. Ed. 2015, 54, 66; b) Y. Yamamoto, A. I. Almansour,
N. Arumugam, R. S. Kumar, Arkivoc 2016, 9. For a review on annulative
-extension reactions: c) H. Ito, K. Ozaki, K. Itami, Angew. Chem.
2017,129, 11296; Angew. Chem. Int. Ed. 2017, 56, 11144.
[5]
[6]
J. W. Grate, G. C. Frye in Sensors Update, Vol. 2 (Eds.: H. Baltes, W.
Göpel, J. Hesse), Wiley-VCH, Weinheim, 2016, pp. 10-20.
For reviews on RhIII-catalyzed annulation: a) T. Satoh, M. Miura, Chem.
Eur. J. 2010, 16, 11212; b) G. Song, F. Wang, X. Li, Chem. Soc. Rev.
2012, 41, 3651; c) S. Chiba, Chem. Lett. 2012, 41, 1554; d) G. Song, X.
Li, Acc. Chem. Res. 2015, 48, 1007; e) K. Shin, H. Kim, S. Chang, Acc.
Chem. Res. 2015, 48, 1040; f) B. Ye, N. Cramer, Acc. Chem. Res. 2015,
48, 1308; g) C. Dutta, J. Choudhury, RSC Adv. 2018, 8, 27881.
For selected reviews on C–H annulations: a) P. Thansandote, M.
Lautens, Chem. Eur. J. 2009, 15, 5874; b) M. Gulías, J. L. Mascareñas,
Angew. Chem. 2016, 128, 11164; Angew. Chem. Int. Ed. 2016, 55,
11000.
[14] W. Yang, R. Bam, V. J. Catalano, W. A. Chalifoux, Angew. Chem. 2018,
130, 14989; Angew. Chem. Int. Ed. 2018, 57, 14773.
[15] For RhIII-catalyzed annulation of picolinamides with olefins: a) J. Zhou, B.
Li, Z.-C. Qian, B.-F. Shi, Adv. Synth. Catal. 2014, 356, 1038; b) A. M.
Martínez, N. Rodríguez, R. Gómez Arrayás, J. C. Carretero, Chem.
Commun. 2014, 50, 6105.
[7]
[8]
[16] Control experiments revealed that both the secondary amide moiety and
the picolinamide skeleton are essential elements (see SI).
[17] For reviews on amide directing groups in CH activation: a) R.-Y. Zhu,
M. E. Farmer, Y.-Q. Chen, J.-Q. Yu, Angew. Chem. 2016, 128, 10734;
Angew. Chem. Int. Ed. 2016, 55, 10578; b) R. Das, G. S. Kumar, M.
Kapur, Eur. J. Org. Chem. 2017, 5439. For pioneering work on the use
of picolinamide as directing group, see: c) V. G. Zaitsev, D. Shabashov,
O. Daugulis, J. Am. Chem. Soc. 2005, 127, 13154.
a) X. Tan, B. Liu, X. Li, B. Li, S. Xu, H. Song, B. Wang, J. Am. Chem.
Soc. 2012, 134, 16163; b) J. Jayakumar, K. Parthasarathy, Y.-H. Chen,
T.-H. Lee, S.-C. Chuang, C.-H. Cheng, Angew. Chem. 2014, 126, 10047;
Angew. Chem. Int. Ed. 2014, 53, 9889; c) D. L. Davies, C. E. Ellul, S. A.
Macgregor, C. L. McMullin, K. Singh, J. Am. Chem. Soc. 2015, 137,
9659; d) D. Ghorai, J. Choudhury, ACS Catal. 2015, 5, 2692; e) S. Peng,
S. Liu, S. Zhang, S. Cao, J. Sun. Org. Lett. 2015, 17, 5032; f) Q. Ge, B.
Li, H. Song, B. Wang, Org. Biomol. Chem. 2015, 13, 7695; g) Q. Ge, Y.
Hu, B. Li, B. Wang, Org. Lett. 2016, 18, 2483; h) J. M. Villar, J. Suárez,
J. A. Varela, C. Saá, Org. Lett. 2017, 19, 1702. For Ru-catalyzed multiple
annulation: i) M. Shankar, K. Ghosh, K. Mukherjee, R. K. Rit, A. K. Sahoo,
Org. Lett. 2018, 20, 5144. See also: j) R. D. C. Mule, A. Shaikh,; A. B.
Gadeab, N. T. Patil, Chem. Commun. 2018, 54, 11909.
[18] For alternate regioselectivity in Pd-catalyzed alkyne benzannulation: refs
10e and 10f. The regioselectivity of the first diyne insertion is in
agreement with the previous observations (ref. 11). For rationalization of
regioselectivity in Co-catalyzed cyclotrimerization involving 1,3-diynes: J.
A. Varela, L. Castedo, M. Maestro, J. Mahía, C. Saá, Chem. Eur. J. 2001,
7, 5203.
[19] CCDC 1857910 (for 2); 1857911 (for 24) and 1857912 (for 32) contains
the supplementary crystallographic data for this paper. These data can
be obtained free of charge from The Cambridge Crystallographic Data
[9]
a) S. Mochida, N. Umeda, K. Hirano, T. Satoh, M. Miura, Chem. Lett.
2010, 39, 744; b) G. Song, D. Chen, C.-L. Pan, R. H. Crabtree, X. Li, J.
Org. Chem. 2010, 75, 7487; c) J. Tang, S. Li, Z. Liu, Y. Zhao, Z. She, V.
D. Kadam, G. Gao, J. Lan, J. You, Org. Lett. 2017, 19, 604; d) H. Sun,
C. Wang, Y.-F. Yang, P. Chen, Y.-D. Wu, X. Zhang, Y. Huang, J. Org.
Chem. 2014, 79, 11863; e) Y. R. Han, S.-H. Shim, D.-S. Kim, C.-H. Jun,
Org. Lett. 2017, 19, 2941; f) G.-T. Zhang, L. Dong, Asian J. Org. Chem.
2017, 6, 812. For Ru-catalyzed version: g) H. Lin, S.-S. Li, L. Dong, Org.
Biomol. Chem. 2015, 13, 11228; h) M. Shankar, K. Ghosh, K. Mukherjee,
R. K. Rit, A. K. Sahoo, Org. Lett. 2016, 18, 6416; i) M. Shankar, T.
Guntreddi, E. Ramesh, A. K. Sahoo, Org. Lett. 2017, 19, 5665; j) K.
Ghosh, M. Shankar, R. K. Rit, G. Dubey, P. V. Bharatam, A. K. Sahoo,
J. Org. Chem. 2018, 83, 9667; k) K. Mukherjee, M. Shankar, K. Ghosh,
A. K. Sahoo, Org. Lett. 2018, 20, 1914.
[20] Attempts to utilize dialkyl 1,3-diynes failed (see SI).
[21] The introduction of a CF3 group at the C5 position of the pyridine ring
gives rise to the formation of hydrogen bonds between a F atom and the
closest CH bond of the diyne Ph group in the case of IV’(CF3) and
TS(IV’-V’)(CF3) (FH distances: 2.42 and 2.47 Å respectively). These
interactions decrease the barrier differences from 2.3 (in Figure 1) to 1.1
kcalmol1, in the gas phase, and could be at the origin of the lack of
selectivity observed in the preparation of products 21 (see SI).
[22] No significant steric interactions are observed in the structure of
TS(VII-VIII), whereas a H-bond between both N atoms provides an
important stabilization. These structural features agree with the fact that
the second C–H functionalization always takes place unless certain
groups close to the reaction center hamper it (“interrupted annulation” in
Scheme 4).
[10] a) N. Umeda, H. Tsurugi, T. Satoh, M. Miura, Angew. Chem. 2008,120,
408; Angew. Chem. Int. Ed. 2008, 47, 4019; b) G. Song, X. Gong, X. Li,
J. Org. Chem. 2011, 76, 7583; c) M. V. Pham, N. Cramer, Angew. Chem.
2014, 126, 3552; Angew. Chem. Int. Ed. 2014, 53, 3484; d) Z.-C. Qian,
J. Zhou, B. Li, B.-F. Shi, Synlett 2014, 25, 1036; e) A. M. Martínez, J.
[23] For a complete energy profile of this step see SI.
[24] Since a scarce effect of silver salts was observed, a chlorine atom was
kept in the copper salt employed as a model to assess the possible
interaction between Rh and Cu through a chlorine bridge in any of the
This article is protected by copyright. All rights reserved.