ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Copper-Catalyzed Decarboxylative
Trifluoromethylation of Allylic
Bromodifluoroacetates
Brett R. Ambler and Ryan A. Altman*
Department of Medicinal Chemistry, University of Kansas, 1251 Wescoe Hall Drive,
Lawrence, Kansas 66045, United States
Received September 25, 2013
ABSTRACT
The development of new synthetic fluorination reactions has important implications in medicinal, agricultural, and materials chemistries. Given
the prevalence and accessibility of alcohols, methods to convert alcohols to trifluoromethanes are desirable. However, this transformation
typically requires four-step processes, specialty chemicals, and/or stoichiometric metals to access the trifluoromethyl-containing product. A two-
step copper-catalyzed decarboxylative protocol for converting allylic alcohols to trifluoromethanes is reported. Preliminary mechanistic studies
distinguish this reaction from previously reported Cu-mediated reactions.
New synthetic methods for the efficient incorporation
of trifluoromethanes into organic molecules are important
for the fields of agricultural chemistry,1 medicinal chemis-
try,2 chemical biology,2a,b and materials science.3 As a
result, many elegant and important preparations of tri-
fluoromethanes have emerged in recent years.4 However,
many simple, useful, and important transformations have
not been achieved.
The ability to convert alcohols into trifluoromethanes
using a simple, mild, and robust catalytic system represents
a desirable transformation. Alcohols are found in materi-
als, bioactive molecules, and many chemical libraries,
are readily accessed by many synthetic methods, and
provide a wide variety of substrates for synthetic transfor-
mations. However, alcohols rarely serve as precursors to
trifluoromethanes. Most commonly, the conversion of
alcohols into trifluoromethanes requires four-step se-
quences that (1) involve undesirable manipulation of
oxidation states; (2) require excess time and labor to
conduct; (3) generate excess waste; and (4) lead to dimin-
ished overall yields (Scheme 1, eq 1).5 Alternatively, alco-
hols can be converted to halides,6 trifluoroacetates,6b
halodifluoroacetates,7 fluorosulfonyldifluoroacetates,6f,7a
or xanthates,8 which can be trifluoromethylated in the
ꢀ
ꢀ
(5) (a) Fustero, S.; Roman, R.; Sanz-Cervera, J. F.; Simon-Fuentes,
A.; Bueno, J.; Villanova, S. J. Org. Chem. 2008, 73, 8545. (b) Del Valle,
J. R.; Goodman, M. Angew. Chem., Int. Ed. 2002, 41, 1600. (c) Jeannot,
F.; Gosselin, G.; Mathe, C. Org. Biomol. Chem. 2003, 1, 2096. (d) Qiu,
X.-L.; Qing, F.-L. J. Org. Chem. 2002, 67, 7162. (e) Serafinowski, P. J.;
Brown, C. A. Tetrahedron 2000, 56, 333. (f) Chang, J.; Liu, K.;
McEachem, E. J.; Mu, C.; Selenick, H. G.; Shi, F.; Vocaldo, D. J.;
Wang, Y.; Wei, Z.; Zhou, Y.; Zhu, Y. (Alectos Therapeutics Inc., Can.;
Merck Sharp & Dohme Corp.) WO 2012062157 A1 May 18, 2012. (g)
Tam, T. F.; Leung-Toung, R.; Wang, Y.; Zhao, Y. (Apotex Technologies Inc.,
Can.) WO 2008116301 A1 October 2, 2008.
(1) Theodoridis, G. Fluorine-Containing Agrochemicals: An Over-
view of Recent Developments. In Fluorine and the Environment: Agro-
chemicals, Archaeology, Green Chemistry & Water; Tressaud, A., Ed.;
Elsevier B. V.: Amsterdam, 2006.
(6) (a) Kobayashi, Y.; Yamamoto, K.; Kumadaki, I. Tetrahedron
ꢀ
ꢀ
ꢀ
(2) (a) Begue. J.-P.; Bonnet-Delpon, D. Bioorganic and Medicinal
Chemistry of Fluorine; John Wiley & Sons: Hoboken, 2008. (b) Ojima, I.,
Ed. Fluorine in Medicinal Chemistry and Chemical Biology; Blackwell
Publishing Ltd.: West Sussex, 2009.
Lett. 1979, 20, 4071. (b) Larsson, J. M.; Pathipati, S. R.; Szabo, K. J.
J. Org. Chem. 2013, 78, 7330. (c) Bouillon, J.-P.; Maliverney, C.;
Merenyi, R.; Viehe, H. G. J. Chem. Soc., Perkin Trans. 1 1991, 2147.
(d) Su, D.-B.; Duan, J.-X.; Chen, Q.-Y. Tetrahedron Lett. 1991, 32, 7689.
(e) Duan, J.-X.; Su, D.-B.; Chen, Q.-Y. J. Fluorine Chem. 1993, 61, 279.
(f) Chen, Q.-Y. J. Fluorine Chem. 1995, 72, 241.
(7) (a) Duan, J.-X.; Chen, Q.-Y. J. Chem. Soc., Perkin Trans. 1 1994,
725. (b) Tan, L.; Chen, C.-y.; Larsen, R. D.; Verhoeven, T. R.; Reider,
P. J. Tetrahedron Lett. 1998, 39, 3961.
(3) (a) Patil, Y.; Ameduri, B. Prog. Polym. Sci. 2013, 38, 703. (b)
Dhara, M. G.; Banerjee, S. Prog. Polym. Sci. 2010, 35, 1022.
(4) For some recent reviews, see: (a) Liang, T.; Neumann, C. N.;
Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214. (b) Liu, G. Org. Biomol.
Chem. 2012, 10, 6243. (c) Hollingworth, C.; Gouverneur, V. Chem.
Commun. 2012, 48, 2929. (d) Tomashenko, O. A.; Grushin, V. V. Chem.
Rev. 2011, 111, 4475.
(8) Zhu, L.; Liu, S.; Douglas, J. T.; Altman, R. A. Chem.;Eur. J.
2013, 19, 12800.
r
10.1021/ol402780k
XXXX American Chemical Society