2-
[Pt3(CO)6]5 Encapsulated in a Mesoporous Channel
J. Phys. Chem. B, Vol. 102, No. 20, 1998 3875
hydrogenation on sample D was 95.2 kJ mol-1, and that of
sample E was 59.3 kJ mol-1. For both catalysts, the selectivities
of butenes (above 97%) such as 1-butene were independent of
the reaction temperatures. The difference of the activation
energy for the hydrogenation of 1,3-butadiene may be owing
to the stronger adsorption of butadiene on the partially car-
bonylated Pt carbonyl clusters in FSM-16. It is of interest to
find that ethene as a smaller molecule than 1,3-butadiene is
(5) Li, G.-J.; Fujimoto, T.; Fukuoka, A.; Ichikawa, M. Catal. Lett. 1992,
12, 171.
(6) (a) Schultz-Ekloff, G.; Lipski, R. J.; Jaeger, N. I.; Hulstede, P. Catal.
Lett., 1995, 30, 65; (b) Kubelkova, L.; Drozdova, L.; Brabec, L.; Novakova,
J.; Kotrla, J.; Schultz-Ekloff, G. S.; Hulstede, P.; Schultz-Ekloff, G. J. Phys.
Chem. 1996, 100, 15517.
(7) Sheu, L. L.; Knozinger, H.; Sachtler, W. M. H. J. Am. Chem. Soc.
1989, 111, 8125.
(8) Kawi, S.; Gates, B. C. J. Am. Chem. Soc. 1993, 115, 4830.
(9) Kawi, S.; Gates, B. C. J. Chem. Soc., Chem. Commun. 1992, 702.
(10) Ichikawa, M.; Rao, L.-F.; Ito, T.; Fukuoka, A. J. Chem. Soc.,
Faraday Discuss. 1988, 87, 321.
2-
readily hydrogenated on the sterically less crowded [Pt3(CO)6]5
in FSM-16 (samples D and E) by controlling the removal of
CO as a function of evacuation temperature, as shown in Figure
12. The active site area of sample E accessible for 1,3-butadiene
as a larger reactant molecule is estimated to be larger than that
for sample D. Sample E consists of the sterically less crowded
Pt clusters, which are more opened to accommodate the larger
olefin molecules compared to sample D. Regarding the
hydrogenation of 1,3-butadiene, it was demonstrated that the
higher selectivites toward butenes (above 90%) were obtained
regardless the reaction temperature and evacuation temperatures
of the sample up to 373 K. As discussed above, the rate-
determining step is the adsorption of 1,3-butadiene, and thus,
the activation energy may represent the activation barrier for
the removal of butadiene which prevents the adsorption of
monoolefin products for further hydrogenation to n-butane.
(11) Liu, A.-M.; Shido, T.; Ichikawa, M. J. Chem. Soc., Chem. Commun.
1995, 1337.
(12) Meier, W. M.; Olson, D. H. Zeolite 1992, 12, 449.
(13) Rao, L.-F.; Kimura, T.; Fukuoka, A.; Ichikawa, M. J. Chem. Soc.,
Chem. Commun. 1986, 458.
(14) Ichikawa, M. Polyhedron 1988, 7, 2351.
(15) Fukuoka, A.; Kimura, T.; Rao, L.-F.; Kosugi, N.; Kuroda, H.;
Ichikawa, M. Catal. Today 1988, 6, 55.
(16) Fukuoka, A.; Kimura, T.; Rao, L.-F.; Kosugi, N.; Kuroda, H.;
Ichikawa, M. Appl. Catal. 1989, 50, 295.
(17) Ichikawa, M.; Kimura, T.; Fukuoka, A. Stud. Surf. Sci. Catal. 1991,
60, 335.
(18) Ichikawa, M.; Liu, A. M.; Chen, G.; and Shido, T. Top. Catal.
1995, 2, 141.
(19) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck,
J. S. Nature 1992, 359, 710.
(20) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge,
C. T.; Schmitt, K. D.; Chu, C. T-W.; Olson, D. H.; Sheppard, E. W.;
McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. J. Am. Chem. Soc. 1992,
114, 10834.
(21) Inagaki, S.; Fukushima, Y.; Kuroda, K. J. Chem. Soc., Chem.
Commun. 1993, 680.
(22) Inagaki, S.; Koiwai, A.; Suzuki, N.; Fukushima, Y.; Kuroda, K.
Bull. Chem. Soc. Jpn. 1996, 69, 1449.
(23) Huber, C.; Moller, K.; Bein, T. J. Chem. Soc. 1994, 2619.
(24) Sasaki, M.; Osada, M.; Sugimoto, N.; Inagaki, S.; Fukushima, Y.;
Fukuoka, A.; Ichikawa, M. Microporous Mater., in press.
(25) Maschmeyer, T.; Rey, F.; Sankar, G.; Thomas, J. M. Nature 1995,
378, 159. Ozin, G. A.; Ozkar, S. Chem. Mater. 1992, 4, 511. Leonm, R.;
Margolese, D.; Stucky, G.; Petroff, P. M. Phys. ReV. B 1995, 52, 2285.
(26) Yamamoto, T.; Shido, T.; Inagaki, S.; Fukushima, Y.; Ichikawa,
M. J. Am. Chem. Soc. 1996, 118, 5810.
(27) User manual for Technos EXAFS analyzing program.
(28) Donohue, J.Structures of the Elements; Wiley: New York, 1974;
p 219.
(29) Kirtley, S. W. In ComprehensiVe Organometallic Chemistry; ed.
Wilkinson, G., Ed.; Pergamon: Oxford, U.K., 1982; Vol. 3, p 1257.
(30) Koningsberger, D. C.; Prins, R. X-ray Adsorption: Principles,
Applications, Techniques of EXAFS, SEXAFS, and XANES; Wiley: New
York, 1988; p 395.
(31) Irving, R. J.; Magnussen, E. A. J. Chem. Soc. 1956, 1860; 1958,
2283.
(32) Dell’Amico, D. B.; Calderazzo, F.; Veracini, C. A.; Zandona, N.
Inorg. Chem. 1984, 23, 3030.
(33) D’Aniaello, M. J., Jr.; Carr, C. J.; Zammit, M. G. Inorg. Synth.
1989, 26, 319.
(34) Calabrese, J. C.; Dahl, L. F.; Chini, P.; Longoni, G.; Martinengo,
S. J. Am. Chem. Soc. 1974, 96, 2614.
(35) Roth, J. D.; Lewis, G. J.; Safford, L. K.; Jiang, X.; Dahl, L. F.;
Weaver, M. J. J. Am. Chem. Soc. 1992, 114, 6159. Fujimoto, T.; Fukuoka,
A.; Iijima, S.; Ichikawa, M. J. Phys. Chem. 1993, 97, 279.
(36) Brown, C.; Heaton, B. T.; Towel, A. D.; Chini, P. J. Organomet.
Chem. 1979, 181, 233.
(37) Foger, K.; Anderson, J. R. Appl. Surf. Sci. 1979, 2, 335.
(38) Kondo, J. N.; Yokota, K.; Domen, K.; Hirose, C. Catal. Lett. 1996,
40, 81.
4. Conclusion
2-
(1) Bulky Pt carbonyl clusters such as [Pt3(CO)6]5 are
synthesized in the mesoporous channels of FSM-16 by the
reductive carbonylation of H2PtCl6 with CO + H2O at 323 K.
Guest [Pt3(CO)6]5 was extracted from the sample with TPP
2-
salt into the THF solution by cation metathesis. This was
characterized by FTIR, EXAFS, and UV-vis spectroscopy.
(2) [Pt3(CO)6]52- in FSM-16 is stabilized by coimpregnated
countercations NR4+. The thermal stability of the Pt cluster
anion in FSM-16 was evaluated in the following order for the
alkyl groups: R ) butyl, ethyl > methyl, methyl viologen (MV)
. hexyl > no countercations.
(3) EXAFS, TEM, and FTIR studies suggest that [Pt3(CO)6]52-
anions in FSM-16 are transformed by the controlled removal
of CO to the partially decarbonylated Pt clusters and eventually
converted into naked Pt particles of 15 Å size by evacuation
exceeding 473 K, as indicated in Scheme 1.
2-
(4) [Pt3(CO)6]5 in FSM-16 exhibits catalytic activities for
the hydrogenation of ethene and 1,3-butadiene selectively toward
butenes (above 97% selectivety) after the controlled removal
of CO by thermal evacuation that are different from those on
conventional metal catalysts.
References and Notes
(1) Ichikawa, M. AdV. Catal. 1992, 38, 283.
(2) Rao, L.-F.; Fukuoka, A.; Kosugi, N.; Kuroda, H.; Ichikawa, M. J.
Phys. Chem. 1990, 94, 5317.
(3) De Mallmann, A.; Barthomeuf, D. Catal. Lett. 1990, 5, 293.
(4) Li, G.-J.; Fujimoto, T.; Fukuoka, A.; Ichikawa, M. J. Chem. Soc.,
Chem. Commun. 1991, 1337.
(39) Chang, D. C.; Koningberger, D. C.; Gates, B. C. J. Am. Chem.
Soc. 1992, 114, 6460.