with water and acetone, and dried under vacuum at 60 °C for
h. Catalyst characterization by X-ray diffraction (XRD)
Fig. 1d) and transmission electron microscopy (TEM) (Fig. 1c)
thank Dr Douglas Young for reading the manuscript and for pro-
viding valuable comments.
2
(
confirm the anchoring of Cu nanoparticles on ferrite surfaces.
The weight percentage of Cu in the catalyst was found to be
References
1
(a) D. J. Cole-Hamilton, Science, 2003, 299, 1702; (b) R. T. Baker and
W. Tumas, Science, 1999, 284, 1477.
1
.57% by ICP-AES analysis.
2
(a) C. Coperet, M. Chabanas, R. P. Saint-Arroman and J. M. Basset,
Angew. Chem., Int. Ed., 2003, 42, 156; (b) J. M. Basset and A. Choplin,
J. Mol. Catal., 1993, 21, 95; (c) N. Mizuno and M. Misono, Chem. Rev.,
Synthesis of triazole from benzyl azide an alkyne
1
1
998, 98, 199; (d) F. Lefebvre and J. M. Basset, J. Mol. Catal. A: Chem.,
999, 146, 3.
Benzyl azide (1.2 mmol), alkyne (1.0 mmol) and nano-FGT-Cu
catalyst (100 mg) were placed in a crimp-sealed thick-walled
glass tube equipped with a pressure sensor and a magnetic
stirrer. Water (4 mL) was added to the reaction mixture. The reac-
tion tube was placed inside the cavity of a CEM Discover
focused microwave synthesis system, operated at 120 °C (temp-
erature monitored by a built-in infrared sensor), 100 Watts and
3
(a) V. Polshettiwar, C. Len and A. Fihri, Coord. Chem. Rev., 2009, 253,
2599; (b) V. Polshettiwar and A. Molnar, Tetrahedron, 2007, 63, 6949.
4 (a) A. Hu, G. T. Yee and W. Lin, J. Am. Chem. Soc., 2005, 127, 12486;
b) N. T. S. Phan, C. S. Gill, J. V. Nguyen, Z. J. Zhang and C. W. Jones,
(
Angew. Chem., Int. Ed., 2006, 45, 2209; (c) R. Abu-Reziq, H. Alper,
D. Wang and M. L. Post, J. Am. Chem. Soc., 2006, 128, 5279;
(d) C. O. Dalaigh, S. A. Corr, Y. Gunko and S. J. Connon, Angew. Chem.,
Int. Ed., 2007, 46, 4329; (e) T. Hara, T. Kaneta, K. Mori, T. Mitsudome,
T. Mizugaki, K. Ebitanic and K. Kaneda, Green Chem., 2007, 9, 1246;
1
0–60 psi for 8–12 min (Table 2). After completion of the reac-
tion, the catalyst was easily removed from reaction mixture using
an external magnet. After separation of catalyst, the solid
product was filtered off or extracted with ethyl acetate and
recrystallized.
(
4
f) A.-H. Lu, E. L. Salabas and F. Schuth, Angew. Chem., Int. Ed., 2007,
6, 1222; (g) A. H. Latham and M. E. Williams, Acc. Chem. Res., 2008,
41, 411; (h) T. Zeng, W.-W. Chen, C. M. Cirtiu, A. Moores, G. Song and
C.-J. Li, Green Chem., 2010, 12, 570.
(a) V. Polshettiwar and R. S. Varma, Chem. Soc. Rev., 2008, 37, 1546;
5
(
(
b) V. Polshettiwar and R. S. Varma, Acc. Chem. Res., 2008, 41, 629;
c) V. Polshettiwar and R. S. Varma, Curr. Opin. Drug Discov. Devel.,
Synthesis of triazole via in situ generation of alkyl azide
2007, 10, 723; (d) V. Polshettiwar and R. S. Varma, J. Org. Chem., 2008,
7
3, 7417; (e) V. Polshettiwar and R. S. Varma, J. Org. Chem., 2007, 72,
Alkyl halides (1.2 mmol), NaN (1.5 mmol), alkyne (1.0 mmol)
3
7420; (f) Y. Ju and R. S. Varma, J. Org. Chem., 2006, 71, 135; (g) Y. Ju,
D. Kumar and R. S. Varma, J. Org. Chem., 2006, 71, 6697.
(a) M. N. Nadagouda and R. S. Varma, Cryst. Growth Des., 2008, 8, 291;
and nano-FGT-Cu catalyst (100 mg) were placed in a crimp-
sealed thick-walled glass tube equipped with a pressure sensor
and a magnetic stirrer. Four mL of water was added to the reac-
tion mixture. The reaction tube was placed inside the cavity of a
CEM Discover focused microwave synthesis system, operated at
6
7
(
(
b) M. N. Nadagouda and R. S. Varma, Cryst. Growth Des., 2007, 7, 686;
c) M. N. Nadagouda and R. S. Varma, Cryst. Growth Des., 2007, 7,
2582; (d) H. Choi, Y. J. Kim, R. S. Varma and D. D. Dionysiou, Chem.
Mater., 2006, 18, 5377.
(a) V. Polshettiwar, M. N. Nadagouda and R. S. Varma, Chem. Commun.,
1
1
20 °C (temperature monitored by a built-in infrared sensor),
00 Watts and 10–60 psi for 10–20 min (Table 3 and 4). After
2
008, 6318; (b) V. Polshettiwar, M. N. Nadagouda and R. S. Varma,
Chem. Commun., 2008, 6318; (c) V. Polshettiwar and R. S. Varma, Org.
Biomol. Chem., 2009, 7, 37; (d) B. Baruwati, V. Polshettiwar and
R. S. Varma, Tetrahedron Lett., 2009, 50, 1215; (e) V. Polshettiwar and
R. S. Varma, Chem.–Eur. J., 2009, 15, 1582; (f) V. Polshettiwar,
B. Baruwati and R. S. Varma, Green Chem., 2009, 11, 127;
completion of the reaction, the catalyst was easily removed from
reaction mixture using an external magnet. After separation of
catalyst the solid product was filtered off or extracted with ethyl
acetate and recrystallized or purified by column chromatography.
All products listed in Table 2–4 are known in the literature
(
g) Polshettiwar, B. Baruwati and R. S. Varma, Chem. Commun., 2009,
1837; (h) V. Polshettiwar and R. S. Varma, Tetrahedron, 2010, 66, 1091;
(i) V. Polshettiwar and R. S. Varma, Green Chem., 2010, 12, 743;
( j) V. Polshettiwar and R. S. Varma, Tetrahedron, 2010, 66, 1091;
(k) R. Luque, B. Baruwati and R. S. Varma, Green Chem., 2010, 12,
(
except Table 3 entry 5) and were identified by comparison of
1
13
16
their FT-IR, H, and C NMR with literature data. The charac-
terization data for a representative compound, Table 3, entry 5 is
given below.
1540.
8
9
(a) D. R. Buckle and C. J. M. Rockell, J. Chem. Soc., Perkin Trans. 1,
1982, 627; (b) D. R. Buckle, D. J. Outred, C. J. M. Rockell, H. Smith
and B. A. Spicer, J. Med. Chem., 1983, 26, 251; (c) D. R. Buckle,
C. J. M. Rockell, H. Smith and B. A. Spicer, J. Med. Chem., 1986, 29,
4
-(1-Benzyl-1H-1, 2, 3-triazol-4-yl)benzaldehyde (Table 3
−1
entry 5). White solid, Yield 86%, FT-IR (cm ): 3130(w), 2839
2269.
(
(
m), 1690(s), 1608(s), 1572(m), 1305(m), 1213(s), 1171(s), 834
M. J. Genin, D. A. Allwine, D. J. Anderson, M. R. Barbachyn,
D. E. Emmert, S. A. Garmon, D. R. Graber, K. C. Grega, J. B. Hester, D.
K. Hutchinson, J. Morris, R. J. Reischer, C. W. Ford, G. E. Zurenko, J.
C. Hamel, R. D. Schaadt, D. Stapert and B. H. Yagi, J. Med. Chem.,
2000, 43, 953.
1
s), 810(s), 720(s), 701(s), 680(s); H NMR (300 MHz; CDCl )
3
δ : 9.98(1H, s), 7.97–7.82(6H, m), 7.38–7.33(4H, m), 5.59 (2H,
H
1
3
s); C NMR (75 MHz; CDCl ) δ : 191.68, 146.86, 136.33,
3
C
1
5
1
35.76, 134.36, 130.34, 129.24, 128.95, 128.14, 126.01, 120.81,
4.37, Analysis calculated for C H N O: C 72.99, H 4.98, N
5.96; Found: C 72.97, H 4.96, N 15.98.
10 R. Alvarez, S. Velazquez, A. San-Felix, S. Aquaro, E. De Clercq,
C. F. Perno, A. Karlsson, J. Balzariniand and M. J. Camarasa, J. Med.
Chem., 1994, 37, 4185.
1
6 13 3
11 H. Wamhoff, in Comprehensive Heterocyclic Chemistry, ed.
A. R. Katritzky, C. W. Rees, Pergamon, Oxford, vol. 5, pp 669–732.
1
2 (a) K. A. Dururgkar, R. G. Gonnade and C. V. Ramana, Tetrahedron,
Acknowledgements
2009, 65, 3974; (b) A. K. Feldman, B. Colasson and V. V. Fokin, Org.
Lett., 2004, 6, 3897; (c) L. Ackermann, H. K. Potukuchi, D. Landsberg
and R. Vicente, Org. Lett., 2008, 10, 3081; (d) P. Appukkuttan,
W. Dehaen, V. V. Fokin and E. Van der Eycken, Org. Lett., 2004, 6,
Nasir Baig was supported by the Postgraduate Research Program
at the National Risk Management Research Laboratory adminis-
tered by the Oak Ridge Institute for Science and Education
through an interagency agreement between the U.S. Department
of Energy and the U.S. Environmental Protection Agency. We
4223; (e) J. S. Yadav, B. V. S. Reddy, M. Reddy and D. N. Chary, Tetra-
hedron Lett., 2007, 48, 8773; (f) L. S. Campbell-Verduyn,
W. Szymanski, C. P. Postema, R. A. Dierckx, P. H. Elsinga,
D. B. Janssenand and B. L. Feringa, Chem. Commun., 2010, 46, 898;
This journal is © The Royal Society of Chemistry 2012
Green Chem., 2012, 14, 625–632 | 631