Dalton Transactions
Paper
565 nm, yellow light, Fig. S10†), 1 displays an obvious red shift
of 68 nm, which could be ascribed to MLCT.44,45
To investigate the effect of temperature on luminescence,
different-temperature emissions of 1–3 were studied at 97 K,
9 W. G. Kim, M. E. Kang, J. B. Lee, M. H. Jeon, S. Lee, J. Lee,
B. Choi, P. M. S. D. Cal, S. Kang, J.-M. Kee,
G. J. L. Bernardes, J.-U. Rohde, W. Choe and S. Y. Hong,
J. Am. Chem. Soc., 2017, 139, 12121–12124.
197 K and 257 K, respectively. The results show that the emis- 10 R. S. Gomes, G. A. M. Jardim, R. L. de Carvalho,
sion intensities decreased with increasing temperature
(Fig. S11†), which may be caused by the increasing loss of
energy via nonradiative decay.46
M. H. Araujo and E. N. da Silva Júnior, Tetrahedron, 2019,
75, 3697–3712.
11 W. Jiang, J. Yang, Y.-Y. Liu and J.-F. Ma, Chem. Commun.,
2016, 52, 1373–1376.
12 M. Bagherzadeh, A. Bayrami, R. Kia, M. Amini,
L. J. K. Cook and P. R. Raithby, Inorg. Chim. Acta, 2017, 466,
398–404.
13 A. Anamika, A. K. Agrahari, K. K. Manar, C. L. Yadav,
V. K. Tiwari, M. G. B. Drew and N. Singh, New J. Chem.,
2019, 43, 8939–8949.
14 A. G. Mahmoud, M. F. C. Guedes da Silva, K. T. Mahmudov
and A. J. L. Pombeiro, Dalton Trans., 2019, 48, 1774–1785.
15 A. G. Mahmoud, M. F. C. Guedes da Silva, J. Sokolnicki,
P. Smoleński and A. J. L. Pombeiro, Dalton Trans., 2018, 47,
7290–7299.
16 J. Miguel-Ávila, M. Tomás-Gamasa, A. Olmos, P. J. Pérez
and J. L. Mascareñas, Chem. Sci., 2018, 9, 1947–1952.
17 B. Wang, J. Durantini, J. Nie, A. E. Lanterna and
J. C. Scaiano, J. Am. Chem. Soc., 2016, 138, 13127–
13130.
4. Conclusions
In conclusion, three new Cu(I)-CPs constituted by CuCl2,
CuBr2, CuI and a pyridyl-functionalized p-tert-thiacalix[4]arene
ligand have been prepared. The study represents the first
example of Cu(I)-halide CPs bearing the L ligand. 1 and 2
exhibit layer structures, and 3 displays a double chain. 2 has
good chemical and thermal stability. Strikingly, 1 and 2 can
efficiently catalyze AAC reactions. They can also be easily separ-
ated from their reaction systems. After cycling, the activities of
1 and 2 exhibited no obvious decreases and their integrities
were maintained. High stability, easy separation, high catalytic
ability and reusability make CPs 1 and 2 excellent hetero-
geneous catalysts for the AAC reactions. The solid-state lumine-
scence spectra indicate that 1–3 exhibit red or green
emissions.
18 A. Ovsyannikov, S. Solovieva, I. Antipin and S. Ferlay,
Coord. Chem. Rev., 2017, 352, 151–186.
19 M. H. Noamane, S. Ferlay, R. Abidi, N. Kyritsakas and
M. W. Hosseini, New J. Chem., 2017, 41, 6334–6339.
20 V. Burilov, A. Valiyakhmetova, D. Mironova, E. Sultanova,
V. Evtugyn, Y. Osin, S. Katsyuba, T. Burganov, S. Solovieva
and I. Antipin, New J. Chem., 2018, 42, 2942–2951.
21 M. H. Noamane, S. Ferlay, R. Abidi, N. Kyritsakas and
M. W. Hosseini, Inorg. Chim. Acta, 2017, 468, 260–269.
22 A. S. Ovsyannikov, S. Ferlay, S. E. Solovieva, I. S. Antipin,
A. I. Konovalov, N. Kyritsakas and M. W. Hosseini,
CrystEngComm, 2018, 20, 1130–1140.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
This work was supported by the NSFC (Grant No. 21771034
and 21761003).
23 S. Du, T.-Q. Yu, W. Liao and C. Hu, Dalton Trans., 2015, 44,
14394–14402.
24 D. Geng, M. Zhang, X. Hang, W. Xie, Y. Qin, Q. Li, Y. Bi and
Z. Zheng, Dalton Trans., 2018, 47, 9008–9013.
25 R. O. Fuller, G. A. Koutsantonis, I. Lozić, M. I. Ogden and
B. W. Skelton, Dalton Trans., 2015, 44, 2132–2137.
26 C. Shi, M. Zhang, X. Hang, Y. Bi, L. Huang, K. Zhou, Z. Xu
and Z. Zheng, Nanoscale, 2018, 10, 14448–14454.
27 A. S. Ovsyannikov, M. H. Noamane, R. Abidi, S. Ferlay,
S. E. Solovieva, I. S. Antipin, A. I. Konovalov, N. Kyritsakas
and M. W. Hosseini, CrystEngComm, 2016, 18, 691–703.
References
1 X. Wang, M. Liu, Y. Wang, H. Fan, J. Wu, C. Huang and
H. Hou, Inorg. Chem., 2017, 56, 13329–13336.
2 B.-B. Lu, J. Yang, G.-B. Che, W.-Y. Pei and J.-F. Ma, ACS
Appl. Mater. Interfaces, 2018, 10, 2628–2636.
3 X. Guo, C. Huang, H. Yang, Z. Shao, K. Gao, N. Qin, G. Li,
J. Wu and H. Hou, Dalton Trans., 2018, 47, 16895–16901.
4 D. M. Flores and V. A. Schmidt, J. Am. Chem. Soc., 2019,
141, 8741–8745.
5 J. E. Hein and V. V. Fokin, Chem. Soc. Rev., 2010, 39, 1302– 28 J.-Y. Ge, J. Ru, F. Gao, Y. Song, X.-H. Zhou and J.-L. Zuo,
1315. Dalton Trans., 2015, 44, 15481–15490.
6 O. Altintas, A. P. Vogt, C. Barner-Kowollik and U. Tunca, 29 X. Hang, B. Liu, X. Zhu, S. Wang, H. Han, W. Liao, Y. Liu
Polym. Chem., 2012, 3, 34–45. and C. Hu, J. Am. Chem. Soc., 2016, 138, 2969–2972.
7 V. K. Tiwari, B. B. Mishra, K. B. Mishra, N. Mishra, 30 D. Geng, X. Han, Y. Bi, Y. Qin, Q. Li, L. Huang, K. Zhou,
A. S. Singh and X. Chen, Chem. Rev., 2016, 116, 3086–3240. L. Song and Z. Zheng, Chem. Sci., 2018, 9, 8535–8541.
8 R. V. Thaner, I. Eryazici, O. K. Farha, C. A. Mirkin and 31 L. Xu, J. Yang, Y.-Y. Liu, G.-H. Xu and J.-F. Ma, J. Lumin.,
S. T. Nguyen, Chem. Sci., 2014, 5, 1091–1096.
2019, 209, 398–403.
This journal is © The Royal Society of Chemistry 2019
Dalton Trans.