1
016
M. HRAST ET AL.
Acknowledgments
synthesis, crystal structures, and biological evaluation. Eur J
Med Chem 2011;46:5512–23.
The authors thank Dr Chris Berrie for proof-reading of
the manuscript.
ꢀ
1
6. Toma ꢀs i ꢁc T, Sink R, Zidar N, et al. Dual inhibitor of MurD and
MurE ligases from Escherichia coli and Staphylococcus aureus.
ACS Med Chem Lett 2012;3:626–30.
1
7. Perdih A, Hrast M, Barreteau H, et al. Benzene-1,3-dicarbox-
ylic acid 2,5-dimethylpyrrole derivatives as multiple inhibi-
tors of bacterial Mur ligases (MurC–MurF). Bioorg Med Chem
Disclosure statement
No potential conflict of interest was reported by the authors.
2
014;22:4124–34.
1
8. Brown DG, Bostr o€ m J. Where do recent small molecule clin-
ical development candidates come from? J Med Chem 2018;
61:9442–68.
Funding
This work was supported by the Slovenian Research Agency
(
Grants No. P1-0208, P1-0010, J1-8145) and by the Centre National 19. Proschak E, Stark H, Merk D. Polypharmacology by design: a
de la Recherche Scientifique (CNRS, Projet International de
Recherche Scientifique (PICS) 7757). The PKIS was supplied by
medicinal chemist’s perspective on multitargeting com-
pounds. J Med Chem 2019;62:420–44.
ꢀ
GlaxoSmithKline, LLC and the Structural Genomics Consortium 20. Skedelj V, Toma ꢀs i ꢁc T, Ma ꢀs i ꢀc LP, Zega A. ATP-binding site of
under an open access Material Transfer and Trust Agreement:
bacterial enzymes as a target for antibacterial drug design.
J Med Chem 2011;54:915–29.
2
2
1. Wong KK, Kuo DW, Chabin RM, et al. Engineering a cell-free
murein biosynthetic pathway: combinatorial enzymology in
drug discovery. J Am Chem Soc 1998;120:13527–8.
2. Chappelle EW, Levin GV. Use of the firefly bioluminescent
reaction for rapid detection and counting of bacteria.
Biochem Med 1968;2:41–52.
References
1
.
Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL. Drugs for
bad bugs: confronting the challenges of antibacterial discov-
ery. Nat Rev Drug Discov 2007;6:29–40.
2
2
3. Traut TW. Physiological concentrations of purines and pyri-
midines. Mol Cell Biochem 1994;140:1–22.
4. Lanzetta PA, Alvarez LJ, Reinach PS, Candia OA. An
improved assay for nanomole amounts of inorganic phos-
phate. Anal Biochem 1979;100:95–7.
2
.
.
Brown ED, Wright GD. Antibacterial drug discovery in the
resistance era. Nature 2016;529:336–43.
Kinch MS, Patridge E, Plummer M, Hoyer D. An analysis of
FDA-approved drugs for infectious disease: antibacterial
agents. Drug Discov Today 2014;19:1283–7.
3
2
5. Liger D, Masson A, Blanot D, et al. Over-production, purifica-
tion and properties of the uridine-diphosphate-N-acetylmur-
amate: L-alanine ligase from Escherichia coli. Eur J Biochem
4
.
Gwynn MN, Portnoy A, Rittenhouse SF, Payne DJ. Challenges
of antibacterial discovery revisited. Ann NY Acad Sci 2010;
1213:5–19.
1
995;230:80–7.
5
.
.
Smith CA. Structure, function and dynamics in the Mur fam-
ily of bacterial cell wall ligases. J Mol Biol 2006;362:640–55.
Mengin-Lecreulx D, Flouret B, van Heijenoort J. Cytoplasmic
2
6. Auger G, Martin L, Bertrand J, et al. Large-scale preparation,
purification, and cristallization of UDP-N-acetylmuramoyl-L-
alanine: D-glutamate ligase from Escherichia coli. Protein
Expr Purif 1998;13:23–9.
6
steps of peptidoglycan synthesis in Escherichia coli.
Bacteriol 1982;151:1109–17.
J
ꢀ
27. Gordon E, Flouret B, Chantalat L, et al. Crystal structure of
UDP-N-acetylmuramoyl-L-alanyl-D-glutamate: meso-diamino-
pimelate ligase from Escherichia coli. J Biol Chem 2001;276:
7.
8.
9.
Hrast M, Sosi ꢀc I, Sink R, Gobec S. Inhibitors of the peptido-
glycan biosynthesis enzymes MurA-F. Bioorg Chem 2014;55:
2–15.
1
0999–1006.
Barreteau H, Kova ꢀc A, Boniface A, et al. Cytoplasmic steps of
peptidoglycan biosynthesis. FEMS Microbiol Rev 2008;32:
2
2
3
8. Dementin S, Bouhss A, Auger G, et al. Evidence of a func-
tional requirement for a carbamoylated lysine residue in
MurD, MurE and MurF synthetases as established by chem-
ical rescue experiments. Eur J Biochem 2001;268:5800–7.
9. Wayne PA, CLSI. Methods for dilution antimicrobial suscepti-
bility tests for bacteria that grow aerobically. Approved
standard—Tenth edition. CLSI Document M07-A10. Clinical
and Laboratory Standards Institute, 2015.
0. The European Committee on Antimicrobial Susceptibility
Testing. Breakpoint tables for interpretation of MICs and
168–207.
Kouidmi I, Levesque RC, Paradis-Bleau C. The biology of Mur
ligases as an antibacterial target. Mol Microbiol 2014;94:
242–53.
1
0. El Zoeiby A, Sanschagrin F, Levesque RC. Structure and func-
tion of the Mur enzymes: development of novel inhibitors.
Mol Microbiol 2003;47:1–12.
1
1. Hrast M, Turk S, Sosi ꢀc I, others, et al. Structure-activity rela-
tionships of new cyanothiophene inhibitors of the essential
peptidoglycan biosynthesis enzyme MurF. Eur J Med Chem
2
013;66:32–45.
ꢀ
31. Sim ꢀc i ꢀc M, Sosi ꢀc I, Hodo ꢀs ꢀc ek M, et al. The binding mode of
second-generation sulfonamide inhibitors of MurD: clues for
rational design of potent MurD inhibitors. PLoS ONE 2012;7:
e52817.
1
1
2. Sink R, Barreteau H, Patin D, et al. MurD enzymes: some
recent developments. Biomol Concepts 2013;4:539–56.
3. Barreteau H, Sosi ꢀc I, Turk S, et al. MurD enzymes from differ-
ent bacteria: evaluation of inhibitors. Biochem Pharmacol
2
012;84:625–32.
32. Cavanagh J, Fairbrother WJ, Palmer AG, et al. Protein NMR
spectroscopy: principles and practice. 2nd ed. San Diego,
USA: Academic Press; 2007.
33. McDonald O, Lackey K, Davis-Ward R, et al. Aza-stilbenes as
potent and selective c-RAF inhibitors. Bioorg Med Chem Lett
2006;16:5378–83.
1
4. Zidar N, Toma sꢀi cꢁ T, Sꢀi nk R, et al. Discovery of novel 5-benzy-
lidenerhodanine and 5-benzylidenethiazolidine-2,4-dione
inhibitors of MurD ligase. J Med Chem 2010;53:6584–94.
ꢀ
1
5. Zidar N, Toma ꢀs i ꢁc T, Sink R, et al. New 5-benzylidenethiazoli-
din-4-one inhibitors of bacterial MurD ligase: design,