(
)
346
J.C. Hansen et al.rChemical Physics Letters 314 1999 341–346
w x
7
R. Sander, R. Vogt, G.W. Harris, P.J. Crutzen, Tellus 49B
reaction, we find that it may be necessary to scale
the A-factor calculated from the ab initio results.
This further suggests that in order to estimate the
A-factor for the BrOqHBr reaction, it is necessary
to scale the A-factor. In the BrOqHBr, we use the
scale factor derived from the HOqHCl reaction in
conjunction with the A-factor derived from transition
state theory using the ab initio parameters. The
estimated kinetic rate constant for the BrOqHBr
reaction is 2.1=10y14 cm3 moleculey1 sy1 at 298
K. This value represents an average of rates over the
uncertainty range of the activation energy barrier for
the BrOqHBr reaction. The results suggest that the
BrOqHBr reaction is slow, and is roughly of a
magnitude that is similar to the upper limit result of
Ž
.
1997 522.
w x
8
A.A. Turnipseed, J.W. Birks, J.G. Calvert, J. Phys. Chem. 95
Ž
.
1991 4356.
w x
9
M.J. Frisch, G.W. Trucks, H.B. Schlegel, P.W. Gill, B.G.
Johnson, M.A. Robb, J.R. Cheeseman, T. Keith, G.A. Peter-
son, J.A. Montgomery, K. Raghavachari, M.A. Al-Laham,
V.G. Zakrewski, J.V. Ortiz, J.B. Foresman, J. Cioslowski,
B.B. Stefanov, A. Nanayakkara, M. Challacombe, C.Y. Peng,
P.Y. Ayala, W. Chen, M.W. Wong, J.L. Andres, E.S. Re-
plogle, R. Gomperts, R.L. Martin, D.J. Fox, J.S. Binkeley,
D.J. DeFrees, J. Baker, J.J.P. Stewart, M. Head-Gordon, C.
Gonzalez, J.A. Pople, GAUSSIAN 94, Revision D.2, Gaussian,
Inc., Pittsburgh, PA, 1995.
w
w
w
w
x
Ž
.
10 H.B. Schlegel, J. Chem. Phys. 84 1986 4530.
x
Ž
.
11 C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 41 1988 785.
x
Ž
.
12 A.D. Becke, J. Chem. Phys. 98 1993 1372.
x
13 J.A. Pople, J.S. Binkley, R. Seeger, Int. J. Quantum Chem.
Ž
.
Symp. 10 1976 1.
w x
Turnipseed et al. 8 .
w
w
x
Ž
.
14 G.D. Purvis, R.J. Bartlett, J. Chem. Phys. 76 1982 1910.
x
15 K. Raghavachari, G.W. Trucks, J.A. Pople, M. Head-Gordon,
Ž
.
Chem. Phys. Lett. 157 1989 479.
4. Summary
w
x
16 J. Gauss, W.J. Lauderdale, J.F. Stanton, J.D. Watts, R.J.
Ž
.
Bartlett, Chem. Phys. Lett. 182 1991 207.
w
w
w
w
x
Ž
.
17 T.J. Lee, A.P. Rendell, J. Chem. Phys. 94 1991 6229.
The reaction products and relative energetics for
the reaction of BrOqHBr have been examined. The
reaction of BrO with HBr was found to produce
HOBr. In general, increasing the basis set and im-
proving the level of theory lowers the calculated
activation barrier. This trend shows that it is neces-
sary to do these kinds of calculations with large basis
sets and at high levels of theory. The heat of forma-
x
Ž
.
18 Z. Li, J. Phys. Chem. 103 1997 1206.
x
Ž
.
19 Y. Zhao, J.S. Francisco, J. Chem. Phys. 93 1990 276.
x
Ž
.
20 J.S. Francisco, N. Mira-Camilde, Can. J. Chem. 71 1993
135.
w
x
21 D.C. Clary, G. Nyman, R. Hernandez, J. Chem. Phys. 101
Ž
.
1994 3704.
w
w
x
x
Ž
.
22 G.S. Hammond, J. Am. Chem. Soc. 77 1955 334.
23 M.J. Molina, L.T. Molina, C.A. Smith, Int. J. Chem. Kinet.
Ž
.
16 1984 1151.
Ž .
w
w
w
w
w
w
w
w
x
24 I.W.M. Smith, R. Zellner, J. Chem. Soc., Faraday Trans. 2
tion is calculated at CCSD T r6-311 q q
Ž
.
70 1974 1045.
Ž
.
Ž
.
G 2df, 2p rrCCSDr6-31G d, p level of theory to
be y9.3"4 kcal moly1. The activation barrier is
estimated to be 3.6 kcal moly1 at the same level of
theory.
x
25 A.R. Ravishankara, G.J. Smith, R.T. Watson, D.D. Davis, J.
Ž
.
Phys. Chem. 81 1977 2220.
x
26 W. Hack, O. Horie, H.G. Wagner, Ber. Bunsenges. Phys.
Ž
.
Chem. 85 1981 72.
x
27 D. Husain, J.M.C. Plane, N.K.H. Slater, J. Chem. Soc.,
Ž
.
Faraday Trans. 2 77 1981 1949.
x
28 B.D. Cannon, J.S. Robertshaw, I.W.M. Smith, M.D.
References
Ž
.
Williams, Chem. Phys. Lett. 105 1984 380.
x
29 I.W.M. Smith, M.D. Williams, J. Chem. Soc., Faraday Trans
w x
1
L.A. Barrie, J.W. Bottenheim, R.C. Schnell, P.J. Crutzen,
Ž
.
2 82 1986 1043.
Ž
.
Ž
.
R.A. Rasmussen, Nature London 334 1988 1388.
x
30 P. Sharkey, I.W.M. Smith, J. Chem. Soc., Faraday Trans. 89
w x
2
S.J. Oltmans, L.A. Barrie, E.A. Atlas, L.E. Heidt, H. Niki,
R.A. Rasmussen, P.B. Shepson, Atmos. Environ. 23 1989
Ž
.
1993 631.
Ž
.
x
31 W.B. DeMore, S.P. Sander, D.M. Golden, R.F. Hampson,
M.J. Kurylo, C.J. Howard, A.R. Ravishankara, C.E. Kolb,
M.J. Molina, Jet Propulsion Lab., Pasadena, CA, JPL Publ.
94-26, 1994.
2431.
w x
3
J.W. Bottenheim, L.A. Barrie, E. Atlas, L.E. Heidt, H. Niki,
R.A. Rasmussen, P.B. Shepson, J. Geophys. Res. 95 1990
Ž
.
18555.
w
x
Ž
.
32 E.P. Wigner, Z. Phys. Chem., Abt. B 19 1932 293.
w x
4
B.T. Jobson, H. Niki, Y. Yokouchi, J. Bottenheim, F. Hop-
per, R. Leaitch, J. Geophys. Res. 990 1994 25355.
w
x
33 M.W. Chase, C.A. Davies, J.R. Downex, D.J. Frurip, R.A.
Ž
.
McDonald, A.N. Syverad, J. Phys. Chem. Ref. Data, Suppl.,
w x
Ž
.
5
w x
6
C. De Serves, J. Geophys. Res. 99D 1994 25391.
Ž
.
1985 1.
Ž
.
M. Hausmann, U. Platt, J. Geophys. Res. 99 1992 25399.
w
x
Ž
.
34 R. Ruscic, J. Berkowitz, J. Chem. Phys. 101 1994 7795.