Journal of Materials Chemistry A
Paper
Table 4 Conversion of pivalic acid with different alcoholsa
4 C. S. Cundy and P. A. Cox, Chem. Rev., 2003, 103, 663.
5 H. Tao, H. Yang, Y. Zhang, J. Ren, X. Liu, Y. Wang and G. Lu,
J. Mater. Chem. A, 2013, 1, 13821.
Substrate
Temperature
Yield %
6 H. Atia, U. Armbruster and A. Martin, J. Catal., 2008, 258, 71.
7 S. Zhao, M. Cheng, J. Li, J. Tian and X. Wang, Chem.
Commun., 2011, 47, 2176.
8 J. X. Xi, Y. Zhang, Q. N. Xia, X. H. Liu, J. W. Ren, G. Z. Lu and
Y. Q. Wang, Appl. Catal., A, 2013, 459, 52.
9 Y. Zhang, J. J. Wang, J. W. Ren, X. H. Liu, X. C. Li, Y. J. Xia,
G. Z. Lu and Y. Q. Wang, Catal. Sci. Technol., 2012, 2, 2485.
10 F. Liu, W. Kong, C. Qi, L. Zhu and F.-S. Xiao, ACS Catal.,
2012, 2565.
Pivalic acid
Methanol
t-Butanol
Cyclohexanol
Octanol
343 K
353 K
413 K
413 K
73.8
48.8
39.9
59.8
a
Reaction time: 8 h, catalyst: 0.25 g, pivalic acid: alcohol ¼ 0.01 mol:
0.05 mol.
3.2.4 Extension to other alcohols. To demonstrate that
sample F-S is a widely applicable catalyst in esterication, we
chose four different alcohols: methanol (simple alcohol),
cyclohexanol (cyclic alcohol), t-butanol (branched alcohol) and
octanol (long chain alcohol). Table 4 shows the conversion of
pivalic acid during esterication with four alcohols. We can see
that the high conversion of pivalic acid still can be obtained
when using long chain and cyclic alcohols, although the
temperature is relatively high, indicating that F-S is a really good
solid acid catalyst.
11 F. Liu, X. Meng, Y. Zhang, L. Ren, F. Nawaz and F.-S. Xiao,
J. Catal., 2010, 271, 52.
12 Z. Lv, Q. Sun, X. Meng and F.-S. Xiao, J. Mater. Chem. A, 2013,
1, 8630.
13 M. Okamura, A. Takagaki, M. Toda, J. N. Kondo, K. Domen,
T. Tatsumi, M. Hara and S. Hayashi, Chem. Mater., 2006, 18,
3039.
14 K. Nakajima, M. Okamura, J. N. Kondo, K. Domen,
T. Tatsumi, S. Hayashi and M. Hara, Chem. Mater., 2009,
21, 186.
15 M. Hara, T. Yoshida, A. Takagaki, T. Takata, J. N. Kondo,
S. Hayashi and K. Domen, Angew. Chem., Int. Ed., 2004, 43,
2955.
16 J. A. Melero, J. Iglesias and G. Morales, Green Chem., 2009,
11, 1285.
4 Conclusions
Sulfonated carbon bearing long carbon chains was synthesized
successfully by the hydrothermal carbonization of furfural,
SDBS and H2SO4, and was shown to be highly active in the
esterication of reactions involving bulky organic acids. The
long carbon chains from SDBS provide hydrophobic domains
and play two roles in esterication: one is working together with
–SO3H, –COOH and –OH groups to solubilize more substrates
like amphiphilic surfactants to enhance the contact of the
investigated organic acid with the catalytic active sites and the
other is removing the in situ generated water and prompting the
reaction to proceed further. The cycling usage indicated that the
catalyst prepared by this method was relatively stable.
Furthermore, the prepared catalyst can also be widely used in
other types of esterication reactions, and this carbon-based
solid acid can also be synthesized using other cheaper carbon
precursors, such as sugars, starch, cellulosic polymers and
anything that can be carbonized.
17 P. T. Anastas and M. M. Kirchhoff, Acc. Chem. Res., 2002, 35,
686.
18 T. Okuhara, Chem. Rev., 2002, 102, 3641.
19 L. Wang, J. Zhang, S. Yang, Q. Sun, L. Zhu, Q. Wu, H. Zhang,
X. Meng and F.-S. Xiao, J. Mater. Chem. A, 2013, 1, 9422.
20 F. Liu, T. Willhammar, L. Wang, L. Zhu, Q. Sun, X. Meng,
W. Carrillo-Cabrera, X. Zou and F.-S. Xiao, J. Am. Chem.
Soc., 2012, 134, 4557.
21 P. Barbaro and F. Liguori, Chem. Rev., 2009, 109, 515.
22 L. Peng, A. Philippaerts, X. Ke, J. V. Noyen, F. D. Clippel,
G. V. Tendeloo, P. A. Jacobs and B. F. Sels, Catal. Today,
2010, 150, 140.
23 L. Geng, Y. Wang, G. Yu and Y. Zhu, Catal. Commun., 2011,
13, 26.
24 J. H. Clark, V. Budarin, T. Dugmore, R. Luque,
D. J. Macquarrie and V. Strelko, Catal. Commun., 2008, 9,
1709.
Acknowledgements
25 M. Toda, A. Takagaki, M. Okamura, J. N. Kondo, S. Hayashi,
K. Domen and M. Hara, Nature, 2005, 438, 178.
26 J. J. Wang, W. Xu, J. Ren, X. Liu, G. Lu and Y. Wang, Green
Chem., 2011, 13, 2678.
27 J. J. Wang, J. W. Ren, X. Liu, G. Lu and Y. Wang, AIChE J.,
2013, 59, 2558.
This project was supported nancially by the National Basic
Research Program of China (no. 2010CB732306), the National
Natural Science Foundation of China (no. 21273071 and
21101063) and the Fundamental Research Funds for the Central
Universities.
28 L. Geng, G. Yu, Y. Wang and Y. Zhu, Appl. Catal., A, 2012,
427, 137.
29 B. H. Zhang, J. W. Ren, X. H. Liu, Y. L. Guo, Y. Guo, G. Z. Lu
and Y. Q. Wang, Catal. Commun., 2010, 11, 629.
30 W.-Y. Lou, M.-H. Zong and Z.-Q. Duan, Bioresour. Technol.,
2008, 99, 8752.
Notes and references
1 K. Nakajima and M. Hara, ACS Catal., 2012, 2, 1296.
2 M. E. Davis and R. F. Lobo, Chem. Mater., 1992, 4, 756.
3 R. J. Kalbas, M. Ghiaci and A. R. Massah, Appl. Catal., A,
2009, 353, 1.
31 P. Gupta and S. Paul, Green Chem., 2011, 13, 2365.
11200 | J. Mater. Chem. A, 2014, 2, 11195–11201
This journal is © The Royal Society of Chemistry 2014