4
94
Z. Q. Hou et al./Chemical Papers 69 (3) 490–494 (2015)
bond. The alcohol molecule attacked the carbon
atom of RC —NH to form II (RC—NH(OH R )).
507. DOI: 10.1016/j.supflu.2008.10.011.
+
+
ꢀ
He, M. X., Feng, D. C., Zhu, F., & Cai, Z. T. (2004) Alcoholysis
of N-methyl-1,2-thiazetidine-1,1-dioxide: DFT study of water
and alcohol effects. Journal of Physical Chemistry A, 108,
+
Subsequently, II eventually formed III (RC—NH2
ꢀ
(
OR )). Then, III was attacked by H2O to form
IV (RC(NH )(OH)(OR )). IV was further converted
to V (RC—OH (OR )). Finally, V formed VI
RC—O(OR )). At the same time, a small volume of
water directly attacked the RC —NH carbon com-
peting with alcohol to form phenylacetic acid. Hence,
some by-products were afforded, such as NH3, ammo-
nium phenylacetic acid or phenylacetic acid.
7702–7708. DOI: 10.1021/jp048374s.
+
3
ꢀ
Kamitanaka, T., Yamamoto, K., Matsuda, T., & Harada, T.
(2008). Transformation of benzonitrile into benzyl alcohol
and benzoate esters in supercritical alcohols. Tetrahedron,
64, 5699–5702. DOI: 10.1016/j.tet.2008.04.029.
Karlsson, M. F., Birgersson, G., Prado, A. M. C., Bosa, F.,
Bengtsson, M., & Witzgall, P. (2009). Plant odor analysis
of potato: Response of guatemalan moth to above- and be-
lowground potato volatiles. Journal of Agricultural and Food
Chemistry, 57, 5903–5909. DOI: 10.1021/jf803730h.
+
ꢀ
ꢀ
(
+
The treatment of phenylacetonitrile in supercrit-
ical methanol and ethanol in a system containing a
small volume of water was proposed. The effects of
such operating parameters as reaction temperature,
reaction time and molar ratio on product yield were
investigated. The optimal yield of methyl phenylac-
etate from phenylacetonitrile in a system containing
supercritical methanol with a small volume of water
was 70 % at 583 K and 2.5 h. The optimal yield of
ethyl phenylacetate from phenylacetonitrile in a sys-
tem containing supercritical ethanol with a small vol-
ume of water was 80 % at 583 K and 1.0 h. This indi-
cated that the supercritical ethanol was a more suit-
able alcohol for the reaction of phenylacetonitrile. A
feasible mechanism was proposed on the basis of the
experimental results.
Kusdiana, D., & Saka, S. (2004). Effect of water on biodiesel fuel
production by supercritical methanol treatment. Bioresource
Technology, 91, 289–295. DOI: 10.1016/s0960-8524(03)00201-
3.
Lee, G. R., & Crayston, J. A. (1996). Hydrolysis of acetonitrile
in the presence of NbCl5. Polyhedron, 15, 1817–1821. DOI:
10.1016/0277-5387(95)00432-7.
Madras, G., Kolluru, C., & Kumar, R. (2004). Synthesis of
biodiesel in supercritical fluids. Fuel, 83, 2029–2033. DOI:
10.1016/j.fuel.2004.03.014.
Minami, E. J., & Saka, S. (2006). Kinetics of hydrolysis and
methyl esterification for biodiesel production in two-step
supercritical methanol process. Fuel, 85, 2479–2483. DOI:
10.1016/j.fuel.2006.04.017.
Nomura, K., Ogura, H., & Imanishi, Y. (2002). Ruthenium cat-
alyzed hydrogenation of methyl phenylacetate under low hy-
drogen pressure. Journal of Molecular Catalysis A: Chemi-
cal, 178, 105–114. DOI: 10.1016/s1381-1169(01)00281-3.
Periasamy, M., Babu, N. K., & Jayakumar, K. N. (2003). A
novel arylation of arylacetic acid esters using tertiary ary-
lamines and TiCl4. Tetrahedron Letters, 44, 8939–8941. DOI:
Acknowledgements. The authors wish to acknowledge the fi-
nancial support provided by the National Natural Science Foun-
dation of China (nos. 21073064, 21003049).
1
0.1016/j.tetlet.2003.10.009.
Pinheiro, S., Lima, M. B., Gon c¸ alves, C. B. S. S., Pedraza, S. F.,
de Farias, F. M. C. (2000). Control of diasteroselectivity
References
&
in the aldolization of methyl phenylacetate. Tetrahedron Let-
ters, 41, 4033–4034. DOI: 10.1016/s0040-4039(00)00582-7.
Reeve, W., Erikson, C. M., & Aluotto, P. F. (1979). A new
method for the determination of the relative acidities of al-
cohols in alcoholic solutions. The nucleophilicities and com-
petitive reactivities of alkoxides and phenoxides. Canadian
Journal of Chemistry, 57, 2747–2754. DOI: 10.1139/v79-444.
Schneekloth, J. S., Jr., Kim, J., & Sorensen, E. J. (2009). An in-
terrupted Ugi reaction enables the preparation of substituted
indoxyls and aminoindoles. Tetrahedron, 65, 3096–3101. DOI:
Bicker, M., Kaiser, D., Ott, L., & Vogel, H. (2005). Dehydration
of D-fructose to hydroxymethylfurfural in sub- and supercrit-
ical fluids. Journal of Supercritical Fluids, 36, 118–126. DOI:
10.1016/j.supflu.2005.04.004.
Buttery, R. G., Ling, L. C., & Teranishi, R. (1980). Volatiles
of corn tassels: possible corn ear worm attractants. Jour-
nal of Agricultural and Food Chemistry, 28, 771–774. DOI:
1
0.1021/jf60230a020.
Caruso, M. M., Blaiszik, B. J., White, S. R., Sottos, N.
R., Moore, J. S. (2008). Full recovery of francture
&
10.1016/j.tet.2008.08.055.
toughness using a nontoxic solvent-based self-healing sys-
tem. Advanced Functional Materials, 18, 1898–1904. DOI:
Škerget, S., Knez, Ž., & Knez-Hrnčič, M. (2011). Solubility
of solids in sub- and supercritical fluids: a review. Jour-
nal of Chemical & Engineering Data, 56, 694–719. DOI:
10.1002/adfm.200800300.
Chang, Y. J., Wang, Z. Z., Luo, L. G., & Dai, L. Y. (2012).
Additive-assisted Rupe rearrangement of 1-ethynylcyclo-
hexan-1-ol in near-critical water. Chemical Papers, 66, 33–
1
0.1021/je1011373.
Song, E. S., Lim, J. W., Lee, H. S., & Lee, Y. W. (2008).
Transesterification of RBD palm oil using supercritical
methanol. Journal of Supercritical Fluids, 44, 356–363. DOI:
10.1016/j.supflu.2007.09.010.
Vieitez, I., da Silva, C., Alckmin, I., Borges, G. R., Corazza,
F. C., Oliveira, J. V., Grompone, M. A., & Jachmanián, I.
(2010). Continuous catalyst-free methanolysis and ethanoly-
sis of soybean oil under supercritical alcohol/water mixtures.
Renewable Energy, 35, 1976–1981. DOI: 10.1016/j.renene.
2010.01.027.
38. DOI: 10.2478/s11696-011-0093-3.
Demirba ¸s , A. (2002). Biodiesel from vegetable oils via trans-
esterification in supercritical methanol. Energy Conver-
sion and Management, 43, 2349–2356. DOI: 10.1016/s0196-
8904(01)00170-4.
Duan, P. G., Li, S., Yang, Y., Wang, Z. Z., & Dai, L. Y. (2009).
Green medium for the hydrolysis of 5-cyanovaleramide.
Chemical Engineering & Technology, 32, 771–777. DOI:
1
0.1002/ceat.200800607.
Trivedi, V., Bhomia, R., Mitchell, J. C., Coleman, N. J.,
Douroumis, D., & Snowden, M. J. (2013). Study of the effect
of pressure on melting behavior of saturated fatty acids in liq-
uid or supercritical carbon dioxide. Journal of Chemical &
Engineering Data, 58, 1861–1866. DOI: 10.1021/je400260c.
Gasson, E. J., & Hadley, D. J. (1960). U.S. Patent No. 2,921,088.
Washington, D.C., USA: U.S. Patent and Trademark Office.
Goto, M. (2009). Chemical recycling of plastics using sub- and
supercritical fluids. Journal of Supercritical Fluids, 47, 500–
Brought to you by | New York University Bobst Library Technical Services
Authenticated
Download Date | 6/9/15 8:25 PM