T. J. Fisher, P. H. Dussault / Tetrahedron Letters 51 (2010) 5615–5617
5617
4. (a) Ellam, R. M.; Padbury, J. M. J. Chem. Soc., Chem. Commun. 1972, 1086; Base-
promoted fragmentation of hydroperoxyacetals is likely involved in a direct
ozonolytic conversion of terminal alkenes to methyl esters: (b) Marshall, J. A.;
Garofalo, A. W. J. Org. Chem. 1993, 58, 3675; Evano, G.. In Science of Synthesis;
Panek, J. S., Ed.; Thieme: Stuttgart, 2007; Vol. 20b, pp 795–797.
5. Thompson, Q. E. J. Org. Chem. 1962, 27, 4498; Claus, R. E.; Schreiber, S. L. Org.
Synth. 1986, 64, 150.
6. Schwartz, C.; Raible, J.; Mott, K.; Dussault, P. H. Tetrahedron 2006, 62, 10747.
7. 2.0 weight equiv of commercial solid bleach (ꢀ65% purity) delivers
1.3 mol equiv of Ca(OCl)2; other components include NaCl, CaCl2, Ca(ClO3)2,
and water.
reagents can have
a strong influence on rearrangements to
electron-deficient oxygen. The proposed mechanism predicts the
regeneration of HOCl,20 and is consistent with the high conversion
obtained in the presence of substoichiometric t-BuOCl or trichlo-
roisocyanuric acid. The results may be of relevance to atmospheric
decomposition of primary chloroperoxides.21
3. Conclusions
8. Typical procedure for reactions with Ca(OCl)2: To a flame-dried 8 mL vial
equipped with stirbar and screw-top septa cap containing technical grade
Ca(OCl)2 (1.3 equiv, 1.0 mmol, 143 mg of 65% reagent) is added CH3CN (2 mL).
A solution of the hydroperoxy acetal (1.0 equiv, 0.50 mmol) in CH3CN (1 ml) is
added as a single portion via syringe. The reaction is stirred vigorously for
10 min at which time the partially heterogeneous solution is filtered through a
short plug of silica. The reaction vial is rinsed with a small amount of CH2Cl2
and this solution is also filtered through the silica plug. The silica plug is rinsed
with another small portion of CH2Cl2 and the filtrate is concentrated.
9. Mintz, M. J.; Walling, C. Org. Synth. 1969, 49, 9.
We have developed a new fragmentation of hydroperoxyacetals
to esters based upon heterolytic fragmentation of intermediate
chloroperoxides.
CAUTION: While we experienced no hazards in the course of this
work, any preparative work with peroxides should be conducted
with an awareness of the potential for spontaneous and exother-
mic decomposition reactions.22
10. Typical procedure for reactions with t-BuOCl: To a flame dried 8 mL vial
equipped with stirbar and screw-top septa cap containing t-BuOCl (1.2 equiv,
0.6 mmol, 65 mg) is added CH3CN (2 mL). The hydroperoxy acetal (1 equiv,
0.5 mmol) is dissolved in CH3CN (1 mL) and added in one portion via syringe.
The reaction is stirred vigorously for 10 min and then worked up as before.
11. Prepared by Ag(I)-mediated displacement: Cookson, P. G.; Davies, A. G.;
Roberts, B. P. J. Chem. Soc., Chem. Commun. 1976, 1022.
Acknowledgments
This research was funded by NSF(CH-0749916) and the Nebras-
ka Research Initiative and conducted in facilities remodeled with
support from NIH (RR016544-01). NMR spectra were acquired, in
part, on spectrometers purchased with NSF support (MRI
0079750 and CHE 0091975). We thank Dr. Chris Schwartz and Pro-
fessor Stephen DiMagno for helpful discussions.
12. Osipov, A. N.; Panasenko, O. M.; Chekanov, A. V.; Arnhold, J. Free Radical Res.
2002, 36, 749.
13. Marwah, P.; Marwah, A.; Lardy, H. A. Green Chem. 2004, 6, 570.
14. Ochiai, M.; Ito, T.; Takahashi, H.; Nakanishi, A.; Toyonari, M.; Suleda, T.; Goto,
S.; Shiro, M. J. Am. Chem. Soc. 1996, 118, 7716; Milas, N. A.; Plesnicar, B. J. Am.
Chem. Soc. 1968, 90, 4450.
Supplementary data
15. k
opening P 1011/s for the unsubstituted 2-phenylcyclopropyl methyl radical:
TadicBiadatti, M. H. L.; Newcomb, M. J. Chem. Soc., Perkin Trans. 2 1996, 1467.
16. 1m was prepared via addition of H2O2 to dihydropyran: Milas, N. A.; Peeler, R.
L., Jr.; Mageli, O. L. J. Am. Chem. Soc. 1954, 76, 2322.
1H and 13C NMR spectra for 1a–i, 1k–n, 2a–I, 2k–m, 3. Supple-
mentary data associated with this article can be found, in the on-
17. b-Scission of oxygenated alkoxy radicals: Orlando, J. J.; Tyndall, G. S.;
Wallington, T. J. Chem. Rev. 2003, 103, 4657; Erhardt, S.; Macgregor, S. A.;
McCullough, K. J.; Savill, K.; Taylor, B. J. Org. Lett. 2007, 9, 5569.
18. Hock, H.; Kropf, H. Angew. Chem. 1957, 69, 313; Dussault, P. H.; Lee, H. J.; Liu, X.
Perkin. 1 2000, 3006.
References and notes
19. Ochiai, M.; Yoshimura, A.; Miyamoto, K.; Hayashi, S.; Nakanishi, W. J. Am. Chem.
Soc. 2010, 132, 9236.
1. (a) Zmitek, K.; Zupan, M.; Iskra, J. Org. Biomol. Chem. 2007, 5, 3895 (a-
20. Chlorine test strips revealed the diluted aqueous layer from stoichometric
reactions to have up to 50–60% of the theoretical amount of active chlorine.
21. Schnell, M.; Mühlhäuser, M.; Peyerimhoff, S. D. J. Phys. Chem. A 2004, 108, 1298.
22. Medard, L. A.. In Accidental Explosions: Types of Explosive Substances; Ellis
Horwood Ltd: Chichester, 1989; Vol. 2; Patnaik, P. A. Comprehensive Guide to
the Hazardous Properties of Chemical Substances, 3rd ed.; John Wiley and Sons:
Hoboken, NJ, 2007; Zabicky, J.. In The Chemistry of the Peroxide Group;
Rappoport, Z., Ed.; John Wiley and Sons: Chichester, 2006; Vol. 2, pp 597–
773. pt 2.
oxygenated hydroperoxides, transacetalization); (b) Scarso, A.; Strukul, G.. In
Science of Synthesis; Berkessel, A., Ed.; Thieme: Stuggart, 2009; Vol. 38, pp 36–
52 (trapping of carbonyl oxides); (c) Dussault, P. H. In Active Oxygen in
Chemistry; Foote, C. S., Valentine, J. S., Greenberg, A., Liebman, J. F., Eds.; Blackie
A&P: London, 1995; pp 141–203 (addition to enol ethers); (d) Dussault, P. H.;
Lee, I. Q.; Lee, H. J.; Lee, R. J.; Niu, Q. J.; Schultz, J. A.; Zope, U. J. Org. Chem. 2000,
65, 8407 (photooxygenation of enol ethers).
2. Ivanov, S. K.; Kropf, H. In Methoden der Organischen Chemie; Kropf, H., Ed.; Vol.
E13; Thieme: Stuttgart, 1988; 4th ed., pp 1031–1037.
3. Criegee, R. Liebigs Ann. 1948, 560, 127; Kropf, H. In Methoden der Organischen
Chemie; Kropf, H., Ed.; Vol. E13; Thieme: Stuttgart, 1988; 4th ed., pp 1095–
1099.