COMMUNICATIONS Nickel- or Cobalt-Catalyzed Cross-Coupling of Arylsulfonic Acid Salts
methods of direct aromatic heterofunctionalization.
Their utility as electrophiles in other cross-coupling
reactions merits further exploration. While the nickel
catalyst NiCl (PCy ) was shown to be optimal for the
Soc. 2003, 125, 8704–8705; e) V. Percec, J.-Y. Bae, D. H.
Hill, J. Org. Chem. 1995, 60, 6895–6903.
[
[
4] B.-T. Guan, X.-Y. Lu, Y. Zheng, D.-G. Yu, T. Wu, K.-L.
Li, B.-J. Li, Z.-J. Shi, Org. Lett. 2010, 12, 396–399.
5] a) T. Hayashi, Y. Katsuro, Y. Okamoto, M. Kumada,
Tetrahedron Lett. 1981, 22, 4449–4452; b) N. Yoshikai,
H. Matsuda, E. Nakamura, J. Am. Chem. Soc. 2009,
2
3 2
present reaction, the analogous cobalt catalyst
CoCl (PCy ) was also shown to be effective at
2
3 2
a higher temperature of 608C. The efficacy of
CoCl (PCy ) as a catalyst for other cross-coupling re-
131, 9590–9599.
2
3
2
[6] a) E. Wenkert, E. L. Michelotti, C. S. Swindell, J. Am.
Chem. Soc. 1979, 101, 2246–2247; b) J. W. Dankwardt,
Angew. Chem. 2004, 116, 2482–2486; Angew. Chem.
Int. Ed. 2004, 43, 2428–2432; c) B.-T. Guan, S.-K.
Xiang, T. Wu, Z.-P. Sun, B.-Q. Wang, K.-Q. Zhao, Z.-J.
Shi, Chem. Commun. 2008, 12, 1437–1439; d) M.
Tobisu, T. Shimasaki, N. Chatani, Angew. Chem. 2008,
actions remains to be investigated.
Experimental Section
Typical Experimental Procedure (Compound 2)
120, 4944–4947; Angew. Chem. Int. Ed. 2008, 47, 4866–
An argon-purged flask equipped with a magnetic stir bar
was charged with sodium arylsulfonate 1 (0.36 g, 2.0 mmol,
4869.
[
7] a) K. W. Quasdorf, X. Tian, N. K. Garg, J. Am. Chem.
Soc. 2008, 130, 14422–14423; b) B.-T. Guan, Y. Wang,
B.-J. Li, D.-G. Yu, Z.-J. Shi, J. Am. Chem. Soc. 2008,
1
.0 equiv.) and NiCl (PCy ) (13 mg, 1 mol%). The flask was
2 3 2
sealed with a rubber septum, evacuated and filled with
argon. THF (1.3 mL) was charged via a syringe. To this
slurry, 4-methoxyphenylmagnesium bromide (12.0 mL, 0.5M
in THF, 3.0 equiv.) was added dropwise under argon. After
the addition was complete, the reaction mixture was stirred
at room temperature. After 20 h, HPLC analysis indicated
complete consumption of sodium arylsulfonate 1. The reac-
tion mixture was cooled in an ice bath and quenched with
1
30, 14468–14470; c) B.-J. Li, Y.-Z. Li, X.-Y. Lu, J. Liu,
B.-T. Guan, Z.-J. Shi, Angew. Chem. 2008, 120, 10278–
0281; Angew. Chem. Int. Ed. 2008, 47, 10124–10127.
1
[
8] a) P. Kocienski, N. J. Dixon, Synlett 1989, 52–54;
b) K. W. Quasdorf, M. Reiner, K. V. Petrova, N. K.
Garg, J. Am. Chem. Soc. 2009, 131, 17748–17749; c) A.
Antoft-Finch, T. Blackburn, V. Snieckus, J. Am. Chem.
Soc. 2009, 131, 17750–17752; d) L. Xu, B.-J. Li, Z.-H.
Wu, X.-Y. Lu, B.-T. Guan, B.-Q. Wang, K.-Q. Zhao, Z.-
J. Shi, Org. Lett. 2010, 12, 884–887.
saturated aqueous NH Cl (10 mL) and extracted with
4
MTBE (10 mL3). The combined organic layers were dried
over Na SO , filtered, and concentrated under vacuum. The
2
4
crude product was purified by chromatography on SiO2
[
9] T. K. Macklin, V. Snieckus, Org. Lett. 2005, 7, 2519–
(
hexanes) to provide 2 as a white solid; yield: 0.32 g (88%).
Procedures, spectral data, and copies of H and C NMR
2
522.
10] a) K. Kikukawa, T. Matsuda, Chem. Lett. 1977, 159–
62; b) S. Darres, J. P. Jeffrey, J. P. Genet, J. L. Brayer,
1
13
[
[
spectra are given in the Supporting Information.
1
J. P. Demoute, Tetrahedron Lett. 1996, 37, 3857–3860;
c) K. Cheng, B. Zhao, S. Hu, X.-M. Zhang, C. Qi, Tetra-
hedron Lett. 2013, 54, 6211–6214.
Acknowledgements
11] a) E. Wenkert, A.-L. Han, C.-J. Jenny, J. Chem. Soc.
Chem. Commun. 1988, 975–976; b) S. B. Blakey,
D. W. C. MacMillan, J. Am. Chem. Soc. 2003, 125,
6046–6047; c) J. T. Reeves, D. R. Fandrick, Z. Tan, J. J.
Song, H. Lee, N. K. Yee, C. H. Senanayake, Org. Lett.
We thank the Boehringer Ingelheim-Pfizer-GlaxoSmithKline-
AbbVie Non-Precious Metal Catalysis Consortium for gener-
al discussions.
2010, 12, 4388–4391; d) X.-Q. Zhang, Z.-X. Wang, J.
Org. Chem. 2012, 77, 3658–3663.
12] a) T. Saecki, E. C. Son, K. Tamao, Org. Lett. 2004, 6,
References
[
[
617–619; b) G. Nan, F. Zhu, Z. Wei, Chin. J. Chem.
[
1] a) N. Miyaura, Cross-Coupling Reactions: A Practical
Guide, Springer, Berlin, 2002; b) F. Diederich, A. de
Meijere, Metal-Catalyzed Cross Coupling Reactions,
Wiley-VCH, Weinheim, 2004; c) J. Hassan, M. Sev-
ignon, C. Gozzi, E. Schulz, M. Lemaire, Chem. Rev.
2011, 29, 72–78.
13] a) S. Ueno, N. Chatani, F. Kakiuchi, J. Am. Chem. Soc.
007, 129, 6098–6099; b) Y. Zhao, V. Snieckus, Org.
Lett. 2014, 16, 3200–3203.
2
2
002, 102, 1359–1469; d) J. Magano, J. R. Dunetz,
[14] E. Wenkert, T. W. Ferreira, E. L. Michelotti, J. Chem.
Chem. Rev. 2011, 111, 2177–2250.
Soc. Chem. Commun. 1979, 637–638.
[
[
2] D.-G. Yu, B.-J. Li, S.-F. Zheng, B.-T. Guan, B.-Q. Wang,
Z.-J. Shi, Angew. Chem. 2010, 122, 4670–4674; Angew.
Chem. Int. Ed. 2010, 49, 4566–4570.
3] a) B. M. Rosen, K. W. Quasdorf, D. A. Wilson, N.
Zhang, A.-M. Resmerita, N. K. Garg, V. Percec, Chem.
Rev. 2011, 111, 1346–1416; b) S. Sengupta, M. Leite,
D. S. Raslan, C. Quesnelle, V. Snieckus, J. Org. Chem.
[15] a) J. Clayden, M. Julia, J. Chem. Soc. Chem. Commun.
1993, 1682–1683; b) J. Clayden, J. J. A. Cooney, M.
Julia, J. Chem. Soc. Perkin Trans. 1 1995, 7–14.
[16] a) C.-H. Cho, H.-S. Yun, K. Park, J. Org. Chem. 2003,
68, 3017–3025; b) C.-H. Cho, C. B. Kim, M. Sun, K.
Park, Bull. Korean Chem. Soc. 2003, 24, 1630–1634;
c) C.-H. Cho, I.-S. Kim, K. Park, Tetrahedron 2004, 60,
4589–4599.
1
992, 57, 4066–4068; c) E. Wenkert, E. L. Michelotti,
C. S. Swindell, M. Tingoli, J. Org. Chem. 1984, 49,
894–4899; d) A. H. Roy, J. F. Hartwig, J. Am. Chem.
[17] R. R. Milburn, V. Snieckus, Angew. Chem. 2004, 116,
906–909; Angew. Chem. Int. Ed. 2004, 43, 888–891.
4
Adv. Synth. Catal. 2015, 357, 2199 – 2204
ꢀ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2203