Please do not adjust margins
ChemComm
DOI: 10.1039/C7CC02212C
COMMUNICATION
Journal Name
site-specific labeling with TBET-based fluorogens. We set out
to test the suitability of dyes 11 and 12 in SRM of vimentin.
4
5
a) A.-C. Knall and C. Slugovc, Chem. Soc. Rev., 2013, 42
5131; b) E. Kozma, O. Demeter and P. Kele,
ChemBioChem, 2017, 18, 486.
,
While GSDIM SRM with TIRF illumination was possible with
vimentin
BCNendo
a) G. Cserép, A. Herner and P. Kele, Methods Appl.
-mOrange labeled with dye 11, we did not get
Fluoresc., 2015,
Raines, ACS Chem. Biol., 2014,
A. Nadler and C. Schultz, Angew. Chem. Int. Ed., 2013,
, 2408.
3
, 042001; b) L. D. Lavis and R. T.
any specific SRM signal with diethyl-derivative 12 (Figure 3).
SRM imaging with SiR-11 (Figure 3E, F) clearly gives enhanced
resolution compared to the reference channels (Figure 3A-D,
and Figure S11).
9
, 855.
6
7
5
2
a) A. Herner, I. Nikić, M. Kállay, E. A. Lemke and P. Kele,
Org. Biomol. Chem., 2013, 11, 3297; b) A. Herner, G.
Estrada Girona, I. Nikić, M. Kállay, E. A. Lemke and P.
Kele, Bioconjugate Chem., 2014, 25, 1370; c) O.
Demeter, E. A. Fodor, M. Kállay, G. Mező, K. Németh, P.
T. Szabó and P. Kele, Chem. Eur. J., 2016, 22, 6382; d)
G. Knorr, E. Kozma, A. Herner, E. A. Lemke and P. Kele,
Chem. Eur. J., 2016, 22, 8972.
a) N. K. Devaraj, S. Hilderbrand, R. Upadhyay, R.
Mazitschek and R. Weissleder, Angew. Chem. Int. Ed.,
2010, 49, 2869; b) J. Yang, J. Šečkutė, C. M. Cole and
N. K. Devaraj, Angew. Chem. Int. Ed., 2012, 51, 7476.
a) L. G. Meimetis, J. C. T. Carlson, R. J. Giedt, R. H.
Kohler and R. Weissleder, Angew. Chem. Int. Ed., 2014,
In conclusion, we have developed double-fluorogenic
siliconrhodamine-tetrazine probes with improved kinetics and
enhanced fluorescence turn-on ratios in the NIR region upon
inverse electron demand Diels-Alder reactions. We have
demonstrated the effect of the linker and N-alkylation pattern
of the SiR-tetrazine core on labeling efficiency by confocal
microscopy. We successfully applied one derivative in site-
specific super-resolution imaging of a cytoskeletal protein,
vimentin. Such probes with distinct spectral characteristics
would allow multicolor super-resolution imaging of various
intracellular structures.
8
9
53, 7531; b) H. Wu, J. Yang, J. Šečkute and N. K.
Devaraj, Angew. Chem. Int. Ed., 2014, 53, 5805 c) A.
Wieczorek, T. Buckup and R. Wombacher, Org. Biomol.
Chem., 2014, 12, 4177; d) A. Wieczorek, P. Werther, J.
Euchner and R. Wombacher, Chem. Sci., 2017, 8, 1506;
e) P. Agarwal, B. J. Beahm, P. Shieh and C. R. Bertozzi,
Angew. Chem. Int. Ed., 2015, 54, 11504; f) J. C. T.
Carlson et al., Angew. Chem. Int. Ed., 2013, 52, 6917.
1
0
a) G. Lukinavičius et al., Nat. Chem., 2013, 5, 132; b) S.
Uno, et al., Nat. Chem., 2014, 6, 681; c) P. Shieh, M. S.
Siegrist, A. J. Cullen and C. R. Bertozzi, Proc. Natl. Acad.
Sci. USA, 2014, 111, 5456.
Y. Kushida, T. Nagano and K. Hanaoka, Analyst, 2015,
1
1
1
1
1
2
3
4
1
40, 685.
T. Peng and H. C. Hang, J. Am. Chem. Soc., 2016, 138
4423.
C. Uttamapinant et al., J. Am. Chem. Soc., 2015, 137
602.
,
1
,
4
a) T. G. Kim et al., J. Phys. Chem. A, 2006, 110, 20; b) M.
Steeger, S. Griesbeck, A. Schmiedel, M. Holzapfel, I.
Krummenacher, H. Braunschweig and C. Lambert, Phys.
Chem. Chem. Phys., 2015, 17, 11848.
BCNendo
Figure 3. SRM imaging of vimentin
-mOrange labeled with dye 11. Panels
A,C (cyan) and B,D (magenta) show the mOrange and SiR reference channels for
the corresponding SRM images in panels E and F from dye 11 labeling (3 ꢀM for
1
1
5
6
a) B. Wang, X. Chai, W. Zhu, T. Wang and Q. Wu, Chem.
Commun., 2014, 50, 14374; b) J. Yang, M. R. Karver, W.
Li, S. Sahu and N. K. Devaraj, Angew. Chem. Int. Ed.,
3
0 minutes at 37 °C). SRM images E and F have resolutions of 35 nm and 28 nm
2
0
respectively as determined by the Fourier ring correlation criterion (FRC).
2
012, 51, 5222.
J. B. Grimm, B. P. English, J. Chen, J. P. Slaughter, Z.
Zhang, A. Revyakin, R. Patel, J. J. Macklin, D.
Normanno, R. H. Singer, T. Lionnet and L. D. Lavis, Nat.
Methods, 2015, 12, 244.
J. E. Hoffmann, T. Plass, I. Nikić, I. V. Aramburu, C.
Koehler, H. Gillandt, E. A. Lemke, C. Schultz, Chem. Eur.
J. 2015, 21, 12266.
a) T. Plass et al., Angew. Chem. Int. Ed. 2012, 51, 4166;
b) I. Nikić, T. Plass, O. Schraidt, J. Szymański, J. A.
Briggs, C. Schultz and E. A. Lemke, Angew. Chem. Int.
Ed. 2014, 53, 2245; c) E. Kozma, I. Nikić, B. R. Varga, I.
V. Aramburu, J. H. Kang, O. T. Fackler, E. A. Lemke and
P. Kele, ChemBioChem, 2016, 17, 1518; d) K. Lang, L.
Davis, J. Torres-Kolbus, C. Chou, A. Deiters and J. W.
Chin, Nat. Chem. 2012, 4, 298; e) I. Nikić et al., Angew.
Chem. Int. Ed., 2016, 55, 16172.
R. S. Erdmann et al., Angew. Chem. Int. Ed., 2014, 53,
Notes and references
‡
Present work was supported by the Hungarian Scientific
Research Fund (OTKA, NN-116265) and the “Lendület” Program
of the Hungarian Academy of Sciences (LP2013-55/2013). E.K. is
grateful for the support of The New National Excellence Program
of The Ministry of Human Capacities (Hungary). EAL
acknowledges the SPP1623 and SFB1129 for funding.
1
1
7
8
1
2
3
a) M. Heilemann, J. Biotechnol., 2010, 149, 243; b) B.
Huang, H. Babcock and X. Zhuang, Cell, 2010, 143
047.
a) M. Fernández-Suárez and A. Y. Ting, Nat. Rev. Mol.
Cell Biol., 2008, , 929; b) T. J. Chozinski, L. A. Gagnon
,
1
9
and J. C. Vaughan, FEBS Lett., 2014, 588, 3603.
a) C. P. Ramil and Q. Lin, Chem. Commun., 2013, 49
,
1
2
9
0
1
1007; b) J. A. Prescher and C. R. Bertozzi, Nat. Chem.
Biol., 2005, , 13; c) E. M. Sletten and C. R. Bertozzi,
Angew. Chem. Int. Ed., 2009, 48, 6974.
10242.
N. Banterle et al., J. Struct. Biol., 2013, 183, 363.
1
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins