A. J. Borah, P. Phukan / Tetrahedron Letters 53 (2012) 3035–3037
3037
O
Supplementary data
O
O
H
H
..
_
N
..
H
Supplementary data associated with this article can be found, in
R
N
..
Br
H
..
R
O
S
O
R
N
14
Br
Br
:
15
DBU
N
+
References and notes
H
DBU
+ TsNHBr + DBU
1. (a) Wallis, E. F.; Lane, J. F. Org. React. John Wiley & Sons, New York 1946, 3, 267–
306; (b) Hofmann, A. W. Ber. Dtsch. Chem. 1881, 14, 2725–2736; (c) Hofmann,
A. W. Ber. Dtsch. Chem. 1885, 18, 2734–2741; (d) Senanayake, C. H.;
Fredenburgh, L. E.; Reamer, R. A.; Larsen, R. D.; Verhoeven, T. R.; Reider, P. J.
J. Am. Chem. Soc. 1994, 116, 7947–7948; (e) Saulniere, L.; Chabrier, P. Ann. Chim.
Appl. 1942, 17, 353–370; (f) Shioiri, T. Comp. Org. Syn. 1991, 6, 800–806.
2. (a) Almond, M. R.; Stimmel, J. B.; Thompson, E. A.; Loudon, G. M. Org. Synth. Coll.
1993, 8, 132; (b) Moriarty, R. M.; Chany, C. J., II; Vaid, R. K.; Prakash, O.;
Tuladhar, S. M. J. Org. Chem. 1993, 58, 2478–2482; (c) Zagulyaeva, A. A.; Banek,
C. T.; Yusubov, M. S.; Zhdankin, V. V. Org. Lett. 2010, 12, 4644–4647.
3. Baumgarten, H. E.; Smith, H. L.; Staklis, A. J. Org. Chem. 1975, 40, 3554–3561.
4. Jajigaeshi, S.; Asano, K.; Fujasaki, S.; Kakinami, T.; Okamoto, T. Chem. Lett. 1989,
463–464.
Me
H
O
O
..
_
Br
:
O
C
17
N
DBU
..
R
N
..
R
16
+
+ HBr + DBU
H
_
DBU
R
H
N
N
:
OMe
R
H
+
O
O
O
5. Jew, S.-S.; Park, H. G.; Park, H.-J.; Park, M.-S.; Cho, Y.-S. Tetrahedron Lett. 1990,
31, 1559–1562.
6. Huang, X.; Keillor, J. W. Tetrahedron Lett. 1997, 38, 313–316.
7. (a) Huang, X.; Seid, M.; Keillor, J. W. J. Org. Chem. 1997, 62, 7495–7496; (b)
Keillor, J. W.; Huang, X. Org. Synth. Coll. 2004, 10, 549.
18
Me
Scheme 2. Probable mechanistic pathway.
8. Radlick, P.; Brown, L. R. Synthesis 1974, 290–292.
9. Fujisaki, S.; Tomiyasu, K.; Nishida, A.; Kajigaeshi, S. Bull. Chem. Soc. Jpn. 1988,
61, 1401–1403.
10. Kajigaeshi, S.; Nakagawa, T.; Fujisaki, S.; Nishida, A.; Noguchi, M. Chem. Lett.
1984, 713–714.
A probable mechanistic pathway to explain the rearrange-
ment process is depicted in Scheme 2.17 Initial step of the
reaction is the deprotonation of the NH2 group by the non-
nucleophilic base DBU. The resulting N-based anion (14)
subsequently picks up Br+ ion from TsNBr2. Since, TsNBr2 is an
excellent source of Br+ species,12e formation of an intermediate
N-bromoamide (15) is very facile in this case. In the next step,
the bromoamide anion (16) formed in a DBU-promoted proton
loss, undergoes an intramolecular Hofmann rearrangement via
a nitrene intermediate, to form the corresponding isocyanate
(17). Finally, the electrophilic cyanate group is trapped by meth-
anol to form the carbamate.
11. Miranda, L. S. M.; Silva, T. R.; Crespo, L. T.; Esteves, P. M.; Matos, L. F.;
Diederichs, C. C.; Souza, R. O. M. A. Tetrahedron Lett. 2011, 52, 1639–1640.
12. (a) Phukan, P.; Chakraborty, P.; Kataki, D. J. Org. Chem. 2006, 71, 7533–7537; (b)
Saikia, I.; Phukan, P. Tetrahedron Lett. 2009, 50, 5083–5087; (c) Saikia, I.;
Chakraborty, P.; Phukan, P. ARKIVOC 2009, xiii, 281–286; (d) Saikia, I.; Kashyap,
B.; Phukan, P. Synth. Commun. 2010, 40, 2647–2652; (e) Saikia, I.; Kashyap, B.;
Phukan, P. Chem. Commun. 2011, 47, 2967–2969; (f) Saikia, I.; Rajbongshi, K. K.;
Phukan, P. Tetrahedron Lett. 2012, 53, 761–768.
13. Kharasch, M. S.; Priestley, H. N. J. Am. Chem. Soc. 1939, 61, 3425–3432.
14. (a) Terauchi, H.; Kowata, K.; Minematsu, T.; Takemura, S. Chem. Pharm. Bull.
1977, 25, 556–562; (b) Hegedus, L. S.; McKearin, J. M. J. Am. Chem. Soc. 1982,
104, 2444–2451; (c) Revesz, L.; Blum, E.; Wicki, R. Tetrahedron Lett. 2005, 46,
5577–5580; (d) Griffith, D. A.; Danishefsky, S. J. J. Am. Chem. Soc. 1996, 118,
9526–9538; (e) Shen, R.; Huang, X. J. Org. Chem. 2007, 72, 3961–3964; (f) Han,
J.; Li, T.; Pan, Y.; Kattuboina, A.; Li, G. Chem. Biol. Drug. Des. 2008, 71, 71–77; (g)
Shen, R.; Huang, X. Org. Lett. 2009, 11, 5698–5701; (h) Zhi, S.; An, G.; Sun, H.;
Han, J.; Li, G.; Pan, Y. Tetrahedron Lett. 2010, 51, 2745–2747.
In conclusion, an efficient protocol for Hofmann rearrangement
reaction of various amides has been established by using N,N-di-
bromo-p-toluenesulfonamide in the presence of DBU. Although
the reaction works well at room temperature, use of a higher tem-
perature could push the reaction forward at a much faster rate. The
procedure is very fast, easy to perform, and applicable to various
aromatic, aliphatic, and heteroaromatic amides to produce the
corresponding carbamates in excellent yields.
15. Nair, C. G. R.; Indrasen, P. Talanta 1976, 23, 239.
16. Experimental procedure for the synthesis of carbamate: To a solution of amide
(1 mmol) in methanol (10 mL) was added DBU (0.5 mL). To this solution
TsNBr2 (1 mmol) was added. The reaction mixture was heated under reflux
condition for a period of 10–20 min (TLC). After completion of the reaction
(TLC) methanol was evaporated under reduced pressure. The crude mixture
was then dissolved in EtOAc. This solution was washed with 5% HCl and then
with saturated Na2CO3 solution. The organic extracts were separated and dried
over anhydrous Na2SO4. The crude product was purified by flash column
chromatography using petroleum ether and ethyl acetate (4:1) as eluent to get
the pure carbamate product.
Acknowledgments
Financial Support from DST (Grant No. SR/S1/OC-43/2011) is grate-
fully acknowledged. A.J.B. thanks the UGC for research fellowship.
17. Morrison, R. T.; Boyd, R. N.; Bhattacharjee, S. K. Organic Chemistry, 7th ed.;
Pearson Education-Dorling Kindersley: India, 2011. pp. 711–712.