Table 3 Kinetic data for the reduction of 1 in aqueous solution at T =
25.0 °C
Thus we see that a nitroxyl radical can either donate or accept
an electron. Although other nitroxyl radicals like TEMPO, 4-
oxo-TEMPO, HO-TEMPO also act in the same way, they are
one electron agents,5 but NDS2− is a two electron species, an
important probe12 for reactive oxygen species (ROS) and an
efficient catalyst for the dismutation of superoxide.36 Such a
nitroxyl radical (NDS2−) may act as reducing agent as well as an
oxidizing agent.
Concentration
(mM)
Reductant
pH
kobs, s−1
Source
Ascorbic acida
Ascorbic acida
Ascorbic acida
Hydrazineb
200
200
200
150
150
100
5.17
4.94
4.65
6.10
5.80
6.10
5.01
5.30
5.01
5.01
5.48
5.01
4.39
4.39
4.39
24.0
20.1
18.8
Ref. 17
Ref. 17
Ref. 17
26.0 × 10−4 Ref. 38
16.0 × 10−4 Ref. 38
18.0 × 10−4 Ref. 38
2.7 × 10−3 Ref. 11
5.3 × 10−3 Ref. 11
1.7 × 10−3 Ref. 11
8.1 × 10−3 This work
25.0 × 10−3 This work
14.2 × 10−3 This work
Hydrazineb
Hydrazineb
Hydrogen peroxidec 50
Hydrogen peroxidec 50
Hydrogen peroxidec 30
Acknowledgements
HDSd
2
2
5
5
5
5
The work has been carried out with the financial assistance from
DST (Project No. SR/S1/IC-40/2007) and UGC-CAS to the
Department of Chemistry, Jadavpur University. The award of an
SRF (CSIR, New Delhi) to K.M. is gratefully acknowledged.
HDSd
HDSd
TEMPOe
4-Oxo-TEMPOe
NDS2−e
Instant
This work
32.5 × 10−3 This work
0.5 × 10−3 This work
a At [1] = 0.01 mM, TOAc = 0.20 M, I = 0.20 M (NaClO4). b At [1] =
0.50 mM, [dipicolinic acid] = 0.10 mM, TOAc = 0.20 M, I = 1.00 M
(NaClO4). c At [1] = 0.20 mM, TOAc = 0.20 M, I = 0.50 M (NaClO4).
d At [1] = 0.20 mM, TOAc = 0.10 M, I = 1.50 M (NaCl). e At [1] =
0.20 mM, TOAc = 0.10 M, I = 1.00 M (NaCl).
References
1 (a) R. W. Asmussen, Z. Anorg. Allg. Chem., 1933, 212, 317;
(b) B. J. Wilson, J. M. Hayes and J. A. Durbin, Inorg. Chem., 1976, 15,
1703.
2 (a) Z. Yang and E. S. Gould, Res. Chem. Intermed., 2003, 29, 181;
(b) G. Palmisano, B. Danieli, G. Lesma, F. Trupiano and T. Pilati,, J. Org.
Chem., 1988, 53, 1056; (c) B. Giethlen and J. M. Schaus,, Tetrahedron
Lett., 1997, 38, 8483; (d) J. Zielonka, H. Zhao, Y. Xu and
B. Kalyanaraman, Free Radical Biol. Med., 2005, 39, 853.
3 (a) S. C. Jaehrig, S. Rohn, L. W. Kroh, L. G. Fleischer and T. Kurz, J.
Agric. Food Chem., 2007, 55, 4710; (b) J. M. Saa, C. Marti and A.
G. Raso, J. Org. Chem., 1992, 57, 589; (c) S. Kumar, J. Org. Chem.,
2002, 67, 8842; (d) G. A. Kraus and N. Selvakumar, Tetrahedron Lett.,
1999, 40, 2039; (e) R. T. LaLonde and M. Zhang, J. Nat. Prod., 2004,
67, 697.
4 (a) T. P. Holler and P. B. Hopkins, Biochemistry, 1990, 29, 1953;
(b) Z. L. Liu, Z. X. Han, P. Chen and Y. C. Liu, Chem. Phys. Lipids,
1990, 56, 73; (c) H. Zimmer, D. C. Lankin and S. W. Horgan, Chem.
Rev., 1971, 71, 229.
5 M. J. Vasbinder and A. Bakac, Inorg. Chem., 2007, 46, 2322.
6 (a) P. Ferreira, E. Phillips, D. Rippon and S. C. Tsang, Appl. Catal., B,
2005, 61, 206; (b) D. Brunel, F. Fajula, J. B. Nagy, B. Deroide, M.
J. Verhoef, L. Veum, J. A. Peters and H. van Bekkum, Appl. Catal., A,
2001, 213, 73.
sterically congested and forms weaker adduct with NDS2−; so
K2 value is smaller leading to a smaller kobs
.
No attempt was taken to detect any intermediate such as 2 or
the “spin adduct”, since no saturation kinetics was observed,
which tells us that no intermediate accumulates to a detectable
extent.
1, under similar conditions, reacts with hydroxylamine disul-
fonate (HDS) almost ten times faster than NDS2− (see ESI,
Table S3†). HDS upon oxidation gives the radical NDS2−, which
itself is a mild oxidant. So strong oxidants “kill” NDS2− as
observed here and the yield of NDS2− thus reduces.
7 (a) V. J. Thannickal and B. L. Fanburg, Am. J. Physiol. Lung Cell. Mol.
Physiol., 2000, 279, L1005; (b) W. Droge, Physiol. Rev., 2002, 82, 47.
8 (a) F. Haber and J. Weiss, Proc. R. Soc. London, Ser. A, 1934, 147, 332;
(b) C. Beauchamp and I. Fridovich, J. Biol. Chem., 1970, 245, 4641.
9 Y. Luo, Y. Tian and Q. Rui, Chem. Commun., 2009, 3014.
10 (a) S. M. Hahn, F. J. Sullivan, A. M. DeLuca, M. Sprague, V.
A. Hampshire, M. C. Krishna, A. Russo and J. B. Mitchell,
Int. J. Oncol., 1997, 10, 119; (b) J. B. Mitchell, M. C. Krishna,
A. Samuni, A. Russo and S. M. Hahn, in Reactive Oxygen Species in Bio-
logical Systems: An Interdisciplinary Approach, D. L. Gilbert and
C. A. Colton, Plenum ed., New York, 1999, pp. 293–313; (c) R. Zhang,
E. Shohami, E. Beit-Yannai, R. Bass, V. Trembovler and A. Samuni, Free
Radical Biol. Med., 1998, 24, 332; (d) G. Hu, B. G. Lyeth, X. Zhao, J.
B. Mitchell and J. C. Watson, J. Neurosurg., 2003, 98, 393.
11 R. Mishra, S. Mukhopadhyay and R. Banerjee, Dalton Trans., 2009,
5469.
12 (a) L. Valgimigli, G. F. Pedulli and M. Paolini, Free Radical Biol. Med.,
2001, 31, 708; (b) J. Skolimowski, A. Kochman, L. Gebicka and
D. Metodiewa, Bioorg. Med. Chem., 2003, 11, 3529.
13 S. Swavey, M. C. Ghosh, V. Manivannan and E. S. Gould, Inorg. Chim.
Acta, 2000, 306, 65.
14 S. Yamada and R. Tsuchida, Bull. Chem. Soc. Jpn., 1959, 32, 721.
15 J. H. Murib and D. M. Ritter, J. Am. Chem. Soc., 1952, 74, 3394.
16 R. Davies,M. Mori,A. G.SykesandJ. A.Weil, Inorg. Synth., 1972,12, 197.
17 S. K. Saha, M. C. Ghosh and E. S. Gould, Inorg. Chem., 1992, 31, 5439.
18 A. B. Hoffman and H. Taube, Inorg. Chem., 1968, 7, 1971.
19 R. Davies, M. Mori, A. G. Sykes and J. A. Weil, Inorg. Synth., 1972, 12,
212.
Conclusions
NDS2− radical is generally used as a mild oxidant, but it supplies
−
electron to the O2 part of the conjugate base of μ-superoxo-bis
[pentaamminecobalt(III)]5+ (1), i.e [(NH3)5CoO2Co(NH2)
(NH3)4]4+ (2). NDS2− first forms an intimate spin adduct with
superoxo part of 2 and then supplies two electrons to two mol-
ecules of 2. NDS2− thus converts 1 ultimately to its hydroperoxo
form [(NH3)5Co(HO2)Co(NH3)5]5+ (3) which quickly decom-
+
poses to Co(II), O2, NH4 and other products. No solvent kinetic
effect (kH O/D2O ≈ 1) could be seen and the reaction appears to
2
be non-electroprotic, i.e. necessary proton transfer and electron
transfer occurs to different orbitals at different time. NDS2− after
2−
electron transfer decomposes to NO and SO4
.
Another important conclusion pertains to the synthesis of
Fremy’s salt. Oxidation of hydroxylamine disulfonate (HDS)
gives the radical NDS2−, which decomposes after further
oxidation. In these oxidations, 1 reacts with HDS faster than
NDS2−, which therefore appears to be a kinetically controlled
product. Hence, NDS2− should be taken out of the contact of the
oxidant, as soon as NDS2− is formed and the yield of Fremy’s
salt may be increased.
2718 | Dalton Trans., 2012, 41, 2714–2719
This journal is © The Royal Society of Chemistry 2012