2576
J. Chem. Phys., Vol. 117, No. 6, 8 August 2002
Demyanenko et al.
ACKNOWLEDGMENTS
Support by the National Science Foundation and the Do-
nors of the Petroleum Research Fund, administered by the
American Chemical Society is gratefully acknowledged. The
authors benefited greatly from discussions with Albert
Stolow, Carl Hayden, and David W. Chandler.
1
R. J. Bernish, M. Wu, and R. E. Miller, Faraday Discuss. 97, 57 ͑1994͒; L.
Oudejans, R. E. Miller, and W. L. Hase, ibid. 102, 323 ͑1995͒, and refer-
ences therein.
2
Y. Rudich and R. Naaman, J. Chem. Phys. 96, 8618 ͑1992͒.
A. L. L. East, J. Chem. Phys. 109, 2185 ͑1998͒; A. L. L. East and J. K. G.
3
Watson, ibid. 110, 6099 ͑1999͒.
C. M. Western, P. R. R. Langridge-Smith, B. J. Howard, and S. E. Novick,
4
Mol. Phys. 44, 145 ͑1981͒.
S. G. Kukolich, J. Mol. Spectrosc. 98, 80 ͑1983͒.
M. P. Casassa, J. C. Stephenson, and D. S. King, J. Chem. Phys. 89, 1966
5
6
͑
1988͒.
7
J. R. Hetzler, M. P. Casassa, and D. S. King, J. Phys. Chem. 95, 8086
1991͒; E. A. Wade, J. I. Cline, K. T. Lorenz, C. Hayden, and D. W.
͑
Chandler, J. Chem. Phys. 116, 4755 ͑2002͒.
8
9
Y. Matsumoto, Y. Oshima, and T. Michio, J. Chem. Phys. 92, 937 ͑1990͒.
Ph. Brechignac, S. De Benedictis, N. Halberstadt, B. J. Whitaker, and S.
Avrillier, J. Chem. Phys. 83, 2064 ͑1985͒.
1
0
M. P. Casassa, J. C. Stephenson, and D. S. King, J. Chem. Phys. 85, 2333
͑
1986͒.
11
H. J. Bernstein and G. Herzberg, J. Chem. Phys. 15, 77 ͑1947͒.
J. Billingsley and A. B. Callear, Trans. Faraday Soc. 67, 589 ͑1971͒.
E. Forte and H. Van Den Berg, Chem. Phys. 30, 325 ͑1978͒.
O. Kajimoto, K. Honma, and T. Kobayashi, J. Phys. Chem. 89, 2725
1
1
1
2
3
4
͑
1985͒.
1
1
1
5
6
7
Y. Naitoh, Y. Fujimura, and O. Kajimoto, Chem. Phys. Lett. 190, 135
1992͒.
Y. Naitoh, Y. Fujimura, K. Honma, and O. Kajimoto, Chem. Phys. Lett.
05, 423 ͑1993͒.
Y. Naitoh, Y. Fujimura, K. Honma, and O. Kajimoto, J. Phys. Chem. 99,
3652 ͑1995͒.
͑
2
1
1
1
2
2
2
8
9
0
1
2
O. Kajimoto, Progr. Theor. Phys. Suppl. 116, 167 ͑1994͒.
V. Blanchet and A. Stolow, J. Chem. Phys. 108, 4371 ͑1998͒.
C. C. Hayden and A. Stolow ͑private communication͒.
R. N. Zare and D. R. Herschbach, Proc. IEEE 51, 173 ͑1963͒.
A. V. Demyanenko, V. Dribinski, H. Reisler, H. Meyer, and C. X. W. Qian,
J. Chem. Phys. 111, 7383 ͑1999͒.
2
2
3
4
A. Sanov, Th. Droz-Georget, M. Zyrianov, and H. Reisler, J. Chem. Phys.
1
06, 7013 ͑1997͒.
D. H. Parker and A. Eppink, J. Chem. Phys. 107, 2357 ͑1997͒; Rev. Sci.
Instrum. 68, 3477 ͑1997͒.
K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure,
Constants of Diatomic Molecules, Vol. VI ͑Van Nostrand Reinhold, New
York, 1979͒.
M. W. Feast, Can. J. Res., Sect. A 28, 488 ͑1950͒; G. Meijer, M. Ebben,
and J. J. ter Meulen, Chem. Phys. 127, 173 ͑1988͒; A. Timmermann and
R. Wallenstein, Opt. Commun. 39, 239 ͑1981͒.
J. C. Miller and R. N. Compton, J. Chem. Phys. 84, 675 ͑1986͒.
M. N. R. Ashfold, R. N. Dixon, J. D. Prince, B. Tutcher, and C. M.
Western, J. Chem. Soc., Faraday Trans. 2 82, 1257 ͑1986͒.
I. Fischer, A. Strobel, J. Staecker, G. Niedner-Schatteburg, K. M u¨ ller-
FIG. 8. Correlated distributions P(J) of NO(X,J) states extracted from the
observed energy distributions P(E ) ͑see Fig. 3͒ for NO(A,Nϭ0,11,19) are
25
t
given as a bar graph. The corresponding PST distributions are shown for
comparison ͑solid line͒.
2
6
͑
2͒ The application of the model to the 213 nm photo-
27
2
8
dissociation of (NO) describes well the dependence of 
2
eff
on NO(X,J) for the monitored NO(A,ϭ0,N) levels. The
2
9
best fit in all cases is obtained at an interfragment separation
Dethlefs, and V. Bondybey, J. Chem. Phys. 96, 7171 ͑1992͒.
of R ϭ2.6Ϯ0.4 Å, close to the N–N distance in the ground
30
2
ϩ
2
ϩ
C
Probed A ⌺ ͑as well as the intermediate E ⌺ ͒ state belongs to Hund’s
case b, i.e., the rotational and spin–orbit motions are uncoupled. The
rotational energy is best described by the ‘‘good’’ quantum number N,
ErotϭB•N•(Nϩ1) ͑ignoring the spin–rotational splitting͒. As a conse-
state ͑2.26 Å͒. For high rotational levels of NO(X), the dis-
sociation must take place in the plane, and it produces both
corotating and counterrotating NO fragments, possibly as a
result of mapping of symmetric and antisymmetric transition
state wave functions into product rotational states. For the
highest allowed J states, due to angular momentum con-
straints, only counterrotating products are allowed.
2
ϩ
2
ϩ
2
ϩ
quence, in the E ⌺ � A ⌺ transition, an A ⌺ state with a specific N
͑
and two different JϭNϮ1/2͒ is probed.
31
V. Dribinski, A. Ossadtchi, V. Mandelshtam, and H. Reisler, Rev. Sci.
Instrum. ͑in press͒.
B. J. Whitaker, in Imaging in Chemical Dynamics, edited by A. G. Suits
and R. E. Continetti ͓ACS Symp. Ser. 770, 68 ͑2001͔͒.
The spin–orbit states of NO were suppressed in the simulations of eff
G. E. Busch and K. R. Wilson, J. Chem. Phys. 56, 3638 ͑1972͒.
32
͑
3͒ The correlated NO(X) distributions and the global
3
3
3
4
.
NO(A) distribution cannot be fit by constrained PST. The
dissociation takes place via a tight TS, and exit-channel ef-
fects likely influence the final rotational state distributions.
35
A. V. Demyanenko, V. Dribinski, A. B. Potter, and H. Reisler ͑unpub-
lished͒.
This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
60.36.178.25 On: Sat, 20 Dec 2014 03:40:45
1