8
2
A. Villa et al. / Catalysis Today 186 (2012) 76–82
Table 5
Glycerol oxidation in water.
Catalysta
Mol converted/Pd (m2 h)
Glycerate and tartronate (%)
Oxalate and glycolate (%)
Formate (%)
Pd/CNTs
2.9
1.9
1.2
1.0
85
80
78
49
10
12
10
25
5
8
12
23
Pd/CNTs3:1
Pd/CNTs1:1
Pd/CNTs1:3
a
◦
Reaction conditions: substrate/metal = 1000 (mol/mol), 0.3 M glycerol, 50 C, 4 eq NaOH, pO2 = 3 atm.
Moreover in this latter case the dispropornation mechanism lead-
ing to toluene formation is suppressed.
References
[
[
1] T. Mallat, A. Baiker, Chem. Rev. 104 (2004) 3037.
2] S. Carrettin, P. McMorn, P. Johnston, K. Griffin, C.J. Kiely, G.J. Hutchings, Phys.
Chem. Chem. Phys. 5 (2003) 1329.
Following these results we investigated what happened when
also
a hydrophilic reactant is used. We carried out some
experiments using glycerol, a highly hydrophilic reactant, as the
substrate to oxidize. The results are reported in Table 5.
[3] F. Porta, L. Prati, J. Catal. 224 (2004) 397.
[
[
4] S. Demirel-Gulen, M. Lucas, P. Claus, Catal. Today 102–103 (2005) 166.
5] R.W. Cargill, C.L. Young, R. Battino, P.L. Long, H.L. Clever, IUPAC Commission on
Solubility Data, Solubility Data Series 7 (1981) 190–213.
Contrarily to what expected, also in this case the catalyst activi-
ties followed the same trend as before, i.e. the activity decreased by
increasing the hydrophilicity of the support surface. The increased
affinity of the surface for the reactant seems lowering the desorp-
tion of the products thus decreasing the overall rate of the reaction.
We can find a confirmation of this in the product distribution: to
a highly hydrophilic surface (CNTs1:3) corresponded the highest
amount of products derived by C–C bond cleavage (oxalate, gly-
colate, formate) which raised 48% (Table 5). The adsorbed specie
probably due to the high affinity with the surface, desorbed slowly
thus lowering the reaction rate but on the same time having time
to undergo oxidative cleavage.
[6] A.B. Crozon, M. Besson, P. Gallezot, New J. Chem. 22 (1998) 269–273.
[
[
7] T. Mallat, A. Baiker, Catal. Today 19 (1994) 247–284.
8] P. Vinke, D. deWit, A.T.J.W. de Goede, H. van Bekkum, New Developments
in Selective Oxidation by Heterogeneous Catalysis Studies in Surface Sci-
ence and Catalysis, vol. 72, (Elsevier) Amsterdam, The Netherlands, 1992,
pp. 1–20.
[
9] P. Gallezot, Catal. Today 37 (1997) 405–418.
[
10] A. Villa, D. Wang, N. Dimitratos, D. Su, V. Trevisan, L. Prati, Catal. Today 150
2010) 8–15.
(
[11] P. Serp, J.L. Figueiredo (Eds.), Carbon Materials for Catalysis, Wiley-VCH, Wein-
heim, 2009, pp. 45–92.
12] M.G. Donato, S. Galvagno, M. Lanza, G. Messina, C. Milone, E. Piperopoulos, A.
Pistone, S. Santangelo, J. Nanosci. Nanotechnol. 9 (4) (2009) 3815–3823.
[13] S. Santangelo, G. Messina, M.G. Donato, M. Lanza, C. Milone, A. Pistone, J. Appl.
Phys. 100 (10) (2006) 104311–104315.
[
[
[
14] J.L. Figueiredo, M.F.R. Pereira, Catal. Today 150 (1–2) (2005) 2–7.
15] J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J. Orfao, Carbon 37 (9) (1999)
4
. Conclusions
1
379–1389.
16] J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J.M. Orfao, Ind. Eng. Chem. Res.
6 (12) (2007) 4110–4115.
17] W. Xia, C. Jin, S. Kundu, M. Muhler, Carbon 47 (2009) 919–922.
[
We prepared Pd catalysts which differ by support surface prop-
erties (in particular hydrophilic/hydrophobic property) and tested
them in liquid phase oxidation reactions. We changed the solvent
4
[
[18] Y.C. Chiang, W.H. Lin, Y.C. Chang, Appl. Surf. Sci. 257 (2011) 2401–2410.
[
[
[
[
19] A. Silvestre-Albero, J. Silvestre-Albero, A. Sepúlveda-Escribano, F. Rodríguez-
Reinoso, Microporous Mesoporous Mater. 120 (2009) 62–66.
20] C. Moreno-Castilla, M.V. Lopez-Ramon, F. Carrasco-Marın, Carbon 38 (2000)
1995–2001.
21] A. Erhan Aksoylu, M. Madalena, A. Freitas, M. Fernando, R. Pereira, J.L.
Figueiredo, Carbon 39 (2001) 175–185.
(
cyclohexane and water) and the reactant (benzyl alcohol and glyc-
erol). The activities of the catalysts depended on the match among
reactant, solvent and support surface.
When the reactant is hydrophobic (benzylic alcohol) as the
solvent (cyclohexane), the support surface hydrophobicity can
improve the activity of the catalyst (but not the selectivity). How-
ever, when the solvent is water a complex triphasic system is
formed and the hydrophilicity of the surface can mediate the con-
tact between reactant. In this case the selectivity is also affected.
Conversely when the reactant is hydrophilic (glycerol) as well
as the solvent (water) it has been showed that the hydrophilicity
of the support can limit the activity of the catalyst by lowering the
desorption of the reaction products.
22] C. Moreno-Castillia, M.N. Lopez-Ramon, F. Carrasco-Marin, Carbon 37 (1999)
1379–1389.
[23] H.T. Gomes, S.M. Miranda, M.J. Sampaio, A.M.T. Silva, J.L. Faria, Catal. Today 151
1–2) (2010) 153–158.
(
[
[
24] A.P. Terzyk, J. Colloid Interface Sci. 268 (2) (2003) 301–329.
25] R.J. Madon, M. Boudart, Ind. Eng. Chem. Fundam. 21 (1982) 430.
[26] R. Sumathi, K. Johnson, B. Viswanathan, T.K. Varadarajan, Appl. Catal. A 172
1998) 15.
(
[
27] M. Sankar, E. Nowicka, R. Tiruvalam, Q. He, S.H. Taylor, C.J. Kiely, D. Bethell,
D.W. Knight, G.J. Hutchings, Chem. Eur J., doi:10:1002/chem.201003484.
[28] M. Sankar, E. Nowicka, P.J. Miedziak, G.L. Brett, R.L. Jenkins, N. Dimitratos, S.H.
Taylor, D.W. Knight, D. Bethell, G.J. Hutchings, Faraday Discuss. 145 (2010)
Concluding we have shown that it is possible to tune the
activity/selectivity of a reaction by accurately matching the
hydrophilicity of the surface depending on the solvent and the
alcohol to be oxidized.
341.
[
29] G. Kovtun, T. Kameneva, S. Hladyi, M. Starchevsky, Y. Pazdersky, I. Stolarov, M.
Vargaftik, I. Moiseev, Adv. Synth. Catal. 344 (2002) 957.