Rate Constant for the NCO(X2Π) + O(3P) Reaction
J. Phys. Chem. A, Vol. 107, No. 23, 2003 4635
(11) Mertens, J. D.; Dean, A. J.; Hanson, R. K.; Bowman, C. T. Symp.
(Int.) Combust., [Proc.] 1992, 24, 701.
(12) Mulvihill, J. N.; Phillips, L. F. Symp. (Int.) Combust., [Proc.] 1975,
15, 1113.
tions of the influence of multiple PESs will be needed to address
this issue for the NCO + O system and other radical-radical
systems.54,55
It has recently been shown56 that the large reaction exother-
micity available in many radical-radical reactions can lead to
new dynamical features influencing product branching ratios.
Product channels can be produced without a transformation
through a localized transition-state configuration, and this direct
dynamics mechanism can be responsible for a large number of
reactive trajectories. Detailed theoretical calculations will be
necessary to determine whether this direct dynamics mechanism
also occurs in the NCO + O system.
(13) Qu, Z.-W.; Zhu, H.; Li, Z.-S.; Zhang, X.-K. Chem. Phys. Lett. 2001,
353, 304.
(14) Rim, K. T.; Hershberger, J. F. J. Phys. Chem. A 1999, 103, 3721.
(15) Decker, B. K.; Macdonald, R. G., manuscript in preparation.
(16) He, G.; Tokue, I.; Harding, L.; Macdonald, R. G. J. Phys. Chem.
A 1998, 102, 7653.
(17) Kroto, H. W. Molecular Rotational Spectra; Dover: New York,
1992.
(18) Decker, B. K.; Macdonald, R. G., manuscript in preparation.
(19) Knowels, P. J.; Werner, H.-J.; Hay, P. J.; Cartwright, D. C. J. Chem.
Phys. 1988, 89, 7334.
(20) He, G.; Tokue, I.; Macdonald, R. G.; J. Chem. Phys. 1998, 109,
6312.
(21) Sablier, M. S.; Fujii, T. Chem. ReV. 2002, 102, 2855.
(22) Martin, J. M. L.; Taylor, P. R.; Francois, J. P.; Gijbels, R. Chem.
Phys. Lett. 1994, 226, 475.
(23) Tsang, W. J. Phys. Chem. Ref. Data 1992, 21, 753.
(24) Titarchuk, T. A.; Halpern, J. A. Chem. Phys. Lett. 1995, 232, 192.
(25) Yang, D. L.; Lin, M. C. In The Chemical Dynamics and Kinetics
of Small Radicals; Liu, K., Wagner, A., Eds.; World Scientific: Singapore,
1995; Part I.
(26) Brownsword, R. A.; Hancock, G.; Heard, D. E. J. Chem. Soc.,
Faraday Trans. 1997, 93, 2473.
(27) Becker, K. H.; Kurtenbach, R.; Schmidt, F.; Wiesen, P. Ber. Bunsen-
Ges. Phys. Chem. 1997, 101, 128.
(28) Cooper, W. F.; Park, J.; Hershberger, J. F. J. Phys. Chem. 1993,
97, 3283.
(29) Wategaonkar, S.; Setser, D. W. J. Phys. Chem. 1993, 97, 10028.
(30) Gao, Y.; Decker, B. K.; Macdonald, R. G. Work in progress.
(31) Lee, J. H.; Michael, J. V.; Payne, W. A.; Stief, L. J. J. Chem. Phys.
1978, 69, 3069.
(32) Green, B. D.; Caledonia, G. E.; Murphy, R. E.; Robert, F. X. J.
Chem. Phys. 1982, 76, 2441.
(33) Wysong, I. J. J. Chem. Phys. 1994, 101, 2800.
(34) Juang, D. Y.; Lee, J.-S.; Wang, N. S. Int. J. Chem. Kinet. 1995,
27, 1111.
(35) Atakan, B.; Wolfrum, J. Chem. Phys. Lett. 1991, 178, 157.
(36) Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T.;
Numerical Recipes; Cambridge University Press: Cambridge, U.K., 1988;
Chapter 15.
(37) Macdonald, R. G.; Sonnenfroh, D. M.; Liu, D.-J.; Liu, K. Can. J.
Chem. 1994, 72, 660.
(38) Philips, L. F.; Smith, I. W. M.; Tukett, R. P.; Whitham, C. J. Chem.
Phys. Lett. 1991, 183, 254.
V. Conclusion
The rate constant for the NCO(X2Π) + O(3P) reaction has
been measured to be (2.1 ( 0.76) × 10-10 cm3 molecule-1 s-1
at a temperature of 292 ( 2 K, where the error bars account
for both random and systematic error. The rate constant was
found to be independent of both pressure over the pressure range
of 1.5-7.6 Torr and the nature of a third-body collision partner.
The measured k1 is slightly larger than an estimate of the hard-
sphere collision rate constant between NCO and O and indicates
that intersystem crossing and internal conversion must be facile
in this system. The expected dominant product channel 1c, NO
+ CO, correlates with the doublet manifold; however, adiabati-
2
cally, /3 of the collisions initially start out in the quartet-spin
manifold. The identification of the product channels for this
reaction would confirm the speculation of the importance of
nonadiabatic effects in simple radical-radical reactions. Further
theoretical work on the nature of the complete 3(4,2A′′ + 4,2A′)
system of PESs would also be very useful.
The result of this work was combined with high-temperature
shock tube measurements to determine the temperature depen-
dence of k1 to be (1.9(300/T)0.50) × 10-10 cm3 molecule-1 s-1
temperature dependence as the CN + O2 reaction, that is, T-0.5
.
The NCO + O rate constant appears to have the same general
.
(39) Sauder, D. G.; Dipti, P.-M.; Dagdigian, P. J. J. Chem. Phys. 1991,
95, 1696.
(40) Hancock, G.; McKendrick, K. G. Chem. Phys. Lett. 1986, 127, 125.
(41) Astbury, C. J.; Hancock, G.; McKendrick, K. G. J. Chem. Soc.,
Faraday Trans. 1993, 89, 405.
(42) Fernandez, J. A.; Husain, D.; Sanchez Rayo, M. N.; Castano, F. J.
Chem. Phys. 1997, 106, 7090.
(43) Macdonald, R. G.; Liu, K. J. Chem. Phys. 1993, 98, 3716.
(44) Lin, M. C.; He, Y.; Melius, C. F. J. Phys. Chem. 1993, 97, 9124.
(45) Holbrook, R. Unimolecular Reactions; Wiley-Interscience: London,
1972.
Acknowledgment. This work was supported by the U.S.
Department of Energy, Office of Basic Energy Sciences,
Division of Chemical Sciences, Geosciences, and Biosciences,
under Contract No. W-31-109-ENG-38.
References and Notes
(1) Warnatz, J.; Maas, U.; Dibble, R. W. Combustion: Physical and
Chemical Fundamentals, Modeling and Simulation, Experiments, Pollution
Formation; Springer: Berlin, 1995.
(46) Balla, R. J.; Pasternack, L. J. Phys. Chem. 1987, 91, 73.
(47) North, S. W.; Hall, G. E. J. Chem. Phys. 1997, 106, 60.
(48) Pine, A. S.; Maki, A. G.; Chou, N.-Y. J. Mol. Spectrosc. 1985,
114, 132.
(49) Devi, V. M.; Benner, D. C.; Rinsland, C. P.; Smith, M. A. H. J.
Quant. Spectrosc. Radiat. Transfer 1998, 60, 741.
(50) Mohammad, F.; Morris, V. R.; Fink, W. H.; Jackson, W. M. J.
Phys. Chem. 1993, 97, 11590.
(2) Miller, J. A.; Bowman, C. T. Prog. Energy Combust. Sci. 1989,
15, 287.
(3) Bowman, C. T. In Pollutants from Combustion; Vovelle, C., Ed.;
Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000.
(4) Glarborg, P.; Miller, J. A. Combust. Flame 1994, 99, 475.
(5) Smith, I. W. M. In The Chemical Dynamics and Kinetics of Small
Radicals; Liu, K., Wagner, A., Eds.; World Scientific: Singapore, 1995;
Part I.
(51) Vallance, C.; Maclagan, R. G. A. R.; Phillips, L. F. Chem. Phys.
Lett. 1996, 250, 59.
(6) Becker, K. H.; Kurtenbach, R.; Schmidt, F.; Wiesen, P. Combust.
Flame 2000, 120, 570.
(52) Tully, J. C. J. Chem. Phys. 1971, 62, 1893.
(53) Phillips, L. F. J. Phys. Chem. A 1998, 102, 31.
(54) Graff, M. M.; Wagner, A. F. J. Chem. Phys. 1990, 92, 2423.
(55) Takayanagi, T.; Kurosaki, Y.; Sato, K.; Misawa, K.; Kobayashi,
Y.; Tsunashima, S. J. Phys. Chem. A 1999, 103, 250.
(56) Macy, T. P.; Diaz, R. R.; Heard, D.; Leone, S. R.; Harding, L. B.;
Klippenstein, S. J. J. Phys. Chem. A 2001, 105, 8361.
(7) Schacke, H.; Schmatjko, K.; Wolfrum, J. Arch. Procesow Spalania
1974, 5, 363.
(8) Lifshitz, A.; Frenklach, M. Int. J. Chem. Kinet. 1980, 12, 159.
(9) Higashihara, T.; Kuoda, H.; Saito, K.; Murakami, I. Combust. Flame
1985, 61, 167.
(10) Louge, M.; Y.; Hanson, R. K. Symp. (Int.) Combust., [Proc.] 1985,
20, 665.