10.1002/chem.201705385
Chemistry - A European Journal
FULL PAPER
[8] P.M. Reis, J.A.L. Silva, A.F. Palavra, J.J.R.F. da Silva, T. Kitamura, Y.
Fujiwara, A.J.L. Pombeiro, Angew. Chem. Int. Engl. 42, 2003, 821-823.
[9] A.J.L. Pombeiro, J.J.R. Fraústo da Silva, Y. Fujiwara, J.A.L. Silva, P.M.
Reis, A.M.F. Palavra, Patent WO2004/037416-A2, May 6, 2004.
[10] P.M. Reis, J.A.L. Silva, A.F. Palavra, J.J.R.F. da Silva, A.J.L. Pombeiro, J.
Catal. 2005, 235, 333-340.
[11] M.V. Kirillova, M.L. Kuznetsov, P.M. Reis, J.A.L. Silva, J.J.R.F. da Silva,
A.J.L. Pombeiro, J. Am. Chem. Soc. 2007, 129, 10531-10545.
[12] M.V. Kirillova, J.A.L. da Silva, J.J.R.F. da Silva, A.F. Palavra, A.J.L.
Pombeiro, Adv. Synth. Catal. 2007, 349, 1765-1774.
[13] M.V. Kirillova, M.L. Kuznetsov, J.A.L. da Silva, M.F.C. da Silva, J.J.R.F.
da Silva, A.J.L. Pombeiro, Chem. Eur. J. 2008, 14, 1828-1842.
[14] T. Hubregtse, PhD Thesis, Technical University of Delft, The Netherlands,
2007.
[15] M. Domarus, M. L. Kutnesov, J. Marçalo, A. J. L. Pombeiro, J. A. L. da
Silva, Angew. Chem., Int. Ed. 2016, 128, 1511-1514.
species on the samples was carried out using an ABB EL 3020 infrared
analyser (for details see Supporting Information).
Computational Details
The full geometry optimization of all structures and transition state
has been carried out at the DFT/HF hybrid level of theory using the
B3LYP* functional[73–76] with the Gaussian-09 program package.[77] It was
shown that while the popular pure functionals, such as BP86,
underestimate the relative stability of high spin states and many hybrid
functionals with a high contribution of the Hartree-Fock term overestimate
the relative stability of high spin states, the modified B3LYP functional
(B3LYP*) correctly describes the relative energies of the low and high spin
states in a number of transition metal complexes.[75,76] Since in the
proposed mechanisms the relative stability of the high and low spin states
is a crucial issue, especially the B3LYP* functional was selected for the
calculations. This functional was previously employed by some of us with
success for the theoretical treatment of water oxidation mediated by
amavadin.[15] The B3LYP* functional was constructed using the keywords
[16] K. R. Geethalakshmi, M. P. Waller, M. Buhl, Inorg. Chem. 2007, 46,
11297-11307
[17] D. Sanna, G. Sciortino, V. Ugone, G. Micera, E. Garribba, Inorg. Chem.
2016, 55, 7373-7387.
blyp,
IOp(3/76=1000001500),
IOp(3/77=0720008500)
and
IOp(3/78=0810010000) in Gaussian.
[18] Photoinduced water oxidation with Na2S2O8 catalysed by a vanadium
The relativistic Stuttgart pseudopotential that described 10 core
electrons (MDF10) and the appropriate contracted basis set[78] were
employed for the V atoms, whereas the standard basis set 6-31G* was
applied for all other atoms. Single point calculations with the 6-311+G**
basis set for all non-metal atoms were then performed. The MP4(SDQ)/6-
31G* level was used for the estimates of the NO dimerization energy.
To test the effect of the functional on the rate limiting activation
barrier, the calculations of the key species with the M06 functional[79] has
also been performed. The activation barriers for the NO formation
calculated with the B3LYP* and M06 functionals differ by less than 2
kcal/mol (14.3 and 16.2 kcal/mol, respectively).
No symmetry operations have been applied for any of the
calculated structures. Restricted approximations for the structures with
closed electron shells and unrestricted methods for the structures with
open electron shells have been employed. The geometry optimization of
all structures was carried out for water solution using the SMD model
with default parameters.[80]
The Hessian matrix was calculated analytically for the optimized
structures in order to prove the location of correct minima (no imaginary
frequencies) or saddle points (only one imaginary frequency) and to
estimate the thermodynamic parameters, the latter being calculated at
25°C. The nature of all transition states was investigated by the analysis
of vectors associated with the imaginary frequency and by the
calculations of the intrinsic reaction coordinates (IRC) using the
Gonzalez-Schlegel method.[81–83]
–
cluster [V6O7(OMe)12
]
was reported previously by M. P. Santoni, G. La
Ganga, V. M. Nardo, M. Natali, F. Puntoriero, F. Scandola, S. Campagna, J.
Am. Chem. Soc. 2014, 136, 8189-8192.
[19]: P. F. Lito, J. P. S. Aniceto, C. M. Silva, Water Air Soil Poll. 2012, 223,
6133-6155.
[20] M. R. Duranski, J. Greer, A. Dejam, S. Jaganmohan, N. Hogg, W.
Langston, R .P. Patel, S. F. Yet, X. D. Wang, C. G. Kevil, M. T. Gladwin, D.
J. Lefer, J. Clin. Invest. 2005, 115, 1232-1240.
[21] M. D. Wallenstein, D. D. Myrold, M. Firestone, M. Voytek, Ecol. Appl.
2006, 16, 2143-2152.
[22] R. Hataishi, A. C. Rodrigues, T. G. Neilan, J. G. Morgan, E. Buys, S.
Shiva, R. Tambouret, D. S. Jassal, M. J. Raher, E. Furutani, F. Ichinose, M.
T. Gladwin, A. Rosenzweig, W. M. Zapol, M. H. Picard, K. D. Bloch, M.
Scherrer-Crosbie, Am. J. Physiol. Heart C 2006, 291, H379-H384.
[23] F. Cutruzzolà, S. Rinaldo, N. Castiglione, G. Giardina, I. Pecht, M. Brunori,
Bioessays 2009, 31, 885-891.
[24] Zweier JL, Li H, Samouilov A, Liu X, Nitric Oxide 2010, 15, 83-90.
[25] N. Castiglione, S. Rinaldo, G. Giardina, V. Stelitano, F. Cutruzzolà,
Antioxid. Redox Signal. 2012, 17, 684-716.
[26] J. Wang, G. Keceli, R. Cao, J. T. Su, Z. Y. Mi, Redox Rep. 2017, 22, 17-
25.
as searching word) (last access: November 2017)
[28] S. Nakano, M. Takahashi, A. Sakamoto, H. Morikawa, K. Katayanagi,
Protein Sci. 2012, 21, 383-395.
[29] K. Sen, S. Horrell, D. Kekilli, C. W. Yong, T. W. Keal, H. Atakisi, D. W.
Moreau, R. E. Thorne, M. A. Hough, R. W. Strange, IUCrJ 2017, 4, 495-505.
[30] N. A. Sawyer, S. M. Chambers, J. W. G. Cairney, Mycorrhiza 2003, 13,
217-221.
[31] C. M. R. Nygren, U. Eberhardt, M. Karlsson, J. L. Parrent, B. D. Lindahl, A.
F. S. Taylor, New Phytol. 2008, 180, 875-889.
[32] H. Shoun, S. Fushinobu, L. Jiang, S.-W. Kim, T. Wakagi, Philos Trans R
Soc Lond B Biol Sci. 2012, 367, 1186-1194.
[33] C. Khin, J. Heinecke, P. C. Ford, J. Am. Chem. Soc. 2008, 130, 13830-
13831.
[34] W.-M. Ching, C.-H. Chuang, C.-W. Wu, C.-H. Peng, C.-H. Hung, J. Am.
Chem. Soc. 2009, 131, 7952-7953.
[35] Y. L. Tai, B. A. Dempsey, Water Res. 2009, 43, 546-552.
[36] J. L. Heinecke, C. Khin, J. C. Melo Pereira, S. A. Suárez, A. V. Iretskii, F.
Doctorovich, P. C. Ford, J. Am. Chem. Soc. 2013, 135, 4007-4017.
[37] C.-C. Tsou, W.-L. Yang, W.-F. Liaw, J. Am. Chem. Soc. 2013, 135,
18758-18761.
All energies discussed in the text are Gibbs free energies if not
stated otherwise. The computational details for the reaction steps with
participation of a proton are discussed in Supporting Information.
Acknowledgements
The authors are indebted to Fundação para a Ciência e a
Tecnologia (FCT), Portugal, for financial support (project
UID/QUI/00100/2013) and to Professor Carlos Henriques for the
access to the infrared analyser and to Dr. Esther Bailón-García
for the help and support regarding the IR analysis.
Keywords: Amanita muscaria; DFT calculations; Nitric
oxide; Nitrous oxide; Reaction mechanism
[38] B. C. Sanders, S. M. Hassan, T. C. Harrop, J. Am. Chem. Soc. 2014, 136,
10230-10233.
[39] E. M. Matson, Y. J. Park, A. R. Fout, J. Am. Chem. Soc. 2014, 136,
1739817401.
[40] T. T. Zhang, Y. D. Liu, R. G. Zhong, J. Inorg. Biochem. 2015, 150, 126-
[1] E. Bayer, H. Kneifel, Z. Naturforsch. 1972, 27b, 207-207.
[2] J. A. L. da Silva, J. J. R. Fraústo da Silva, A. J. L. Pombeiro, Coord. Chem.
Rev. 2013, 257, 2388-2400.
[3] R. Berry, E. Armstrong, R. Beddoes, D. Collison, S. Ertok, M. Heliweel, D.
Garner, Angew. Chem., Int. Ed. Eng. 1999, 38, 795-797.
132.
[4] C. M. M. Matoso, A. J. L. Pombeiro, J. J. R. Fraústo da Silva, M. F. C.
Guedes da Silva, J. A. L. da Silva, J. L. Baptista-Ferreira, F. Pinho-Almeida,
[41] D. Wu, B. Shao, M. Fu, C. Luo, Z. Liu, Chem. Eng. J. 2015, 279, 149-155.
[42] Y. M. Kwon, M. Delgado, L. N. Zakharov, T. Seda, J. D. Gilbertson, Chem.
Commun. 2016, 52, 11016-11019.
[43] S. Rakshit, C. J. Matocha, M. S. Coyne, D. Sarkar, IJEST 2016, 13, 1329-
1334.
[44] C. Buchwald, K. Grabb, C. M. Hansel, S. D. Wankel, Geochim.
Cosmochim. Acta 2016, 186, 1-12.
[45] K. C. Grabb, C. Buchwald, C. M. Hansel, S. D. Wankel, Geochim.
Cosmochim. Acta 2017, 196, 388-402.
in Vanadium Compounds
- Chemistry, Biochemistry and Therapeutic
Applications, (Eds.: A. S. Tracey, D. C. Crans), American Chemical Society
Symposium Series Nº 711, American Chemical Society, Washington, 1998,
pp. 241-247.
[5] D. Rehder, Metallomics 2015, 7, 730-742.
[6] P.M. Reis, J.A.L. Silva, J.J.R.F. da Silva, A.J.L. Pombeiro, Chem. Commun.
2000, 1845-1846.
[7] P.M. Reis, J.A.L. Silva, J.J.R.F. da Silva, A.J.L. Pombeiro, J. Mol. Catal. A-
Chem. 2004, 224, 189-195.
[46] L. Casella, O. Carugo, M. Gullotti, S. Doldi, M. Frassoni, Inorg. Chem.
1996, 35, 1101-1113.
This article is protected by copyright. All rights reserved.