278
B. Machura et al. / Polyhedron 24 (2005) 267–279
ˇ
[3] J.N. Kukuskin, Reakcionnaja sposobnost koordinacjonnych soe-
dinienij, Chimija, Leningrad, 1987.
4. Conclusions
[4] J.H. Enemark, R.D. Feltham, Coord. Chem. Rev. 13 (1974)
339.
The [ReCl3(NO)(OPPh3)(pyz)] (1) complex has been
obtained by two different routes, and characterised by
IR, UV–Vis and magnetic measurements. Its crystal
and molecular structure has been determined. Theoreti-
cal studies of [ReCl3(NO)(OPPh3)(pyz)] and the related
complex [ReCl3(NO)(OPPh3)(PPh3)] (2) have been per-
formed by the DFT method with the aim to investigate
their molecular and electronic structures, spectral prop-
erties and bonding. Most of the MOs of 1 and 2 have
complicated character. The electronic configuration of
the metal center in the investigated complexes is as fol-
lows: (dxz)2(dyz)2(dxy)1. The dxy rhenium orbital makes
the main contributions into the HOMO with a-spin
and LUMO with b-spin. The occupied dyz and dxz rhe-
nium orbitals participate in back-donation from the cen-
tral ion to the NO ligand. However, the dyz/dxz and pNꢃ O
orbitals are distributed among several occupied MOs to
give a considerable contribution into several HOMO
and LUMO orbitals. For both complexes, the bonding
pRe–NO orbitals are localised mainly on the rhenium d
orbitals, whereas the pꢃRe–NO orbitals have prevalent
NO character. The results of the NBO analyses indicate
a stronger p-backdonation in complex 1. A shortening
of the Re–N distance and elongation of the N–O bond
length observed for complex 1 confirms it. The TDDFT
calculations for complexes 1 and 2 reveal that the elec-
tronic transitions from the rhenium d orbitals onto the
p* orbitals of the nitrosyl group have small oscillator
strengths and they do not contribute significantly to
the overall shape of the spectrum. They are hidden un-
der the more intense transitions of LMCT character.
[5] K.G. Caulton, Coord. Chem. Rev. 14 (1975) 317.
[6] F. Bottomley, Coord. Chem. Rev. 26 (1978) 7.
[7] K.K. Pandey, Coord. Chem. Rev. 51 (1983) 70.
[8] G. Wilkinson, Comprehensive Coordination Chemistry, vol. 2,
Pergamon Press, Oxford, 1987, p. 100.
[9] G.B. Richter-Addo, P. Legzdins, J. Burstyn, Chem. Rev. 102
(2002) 857.
[10] T.W. Hayton, P. Legzdins, W.B. Sharp, Chem. Rev. 102 (2002)
935.
[11] J.A. McCleverty, Chem. Rev. 104 (2004) 403.
[12] W. Volkert, W.F. Goeckeler, G.J. Ehrhardt, A.R. Ketring, J.
Nucl. Med. 32 (1991) 174.
[13] E.A. Deutsch, K. Libson, J.L. Vanderheyden, Technetium and
Rhenium in Chemistry and Nuclear Medicine, Raven Press, New
York, 1990.
[14] J.O. Dzie˛gielewski, B. Machura, J. Marek, Polyhedron 15 (1996)
3713.
[15] J.O. Dzie˛gielewski, B. Machura, T.J. Bartczak, Polyhedron 15
(1996) 2813.
[16] T.J. Bartczak, W. Czurak, J.O. Dzie˛gielewski, B. Machura, Polish
J. Chem. 72 (1998) 633.
[17] J.O. Dzie˛gielewski, B. Machura, T. Kupka, T.J. Bartczak, W.
Czurak, Polish J. Chem. 72 (1998) 1009.
[18] J.O. Dzie˛gielewski, B. Machura, T.J. Bartczak, W. Czurak, J.
Kusz, J. Warczewski, J. Coord. Chem. 48 (1999) 125.
[19] T.J. Bartczak, W. Czurak, J.O. Dzie˛gielewski, B. Machura, A.
Jankowska, J. Kusz, J. Warczewski, Polyhedron 18 (1999) 2313.
[20] T.J. Bartczak, W. Czurak, J.O. Dzie˛gielewski, B. Machura, J.
Kusz, J. Warczewski, Polish J. Chem. 74 (2000) 265.
[21] T.J. Bartczak, W. Czurak, J.O. Dzie˛gielewski, B. Machura, A.
Jankowska, J. Kusz, J. Warczewski, J. Coord. Chem. 52 (2001)
361.
[22] B. Machura, J.O. Dzie˛gielewski, S. Michalik, T.J. Bartczak, R.
Kruszynski, J. Kusz, Poyhedron 21 (2002) 2617.
[23] M.C. Aragoni, M. Arca, T. Cassano, C. Denotti, F.A. Devilla-
nova, F. Isaia, V. Lippolis, D. Natali, L. Niti, M. Sampietro, R.
Tommasi, G. Verani, Inorg. Chem. Commun. 5 (2002) 869.
[24] P. Romaniello, F. Lelj, Chem. Phys. Lett. 372 (2003) 51.
[25] P. Norman, P. Cronstrand, J. Ericsson, Chem. Phys. 285 (2002)
207.
5. Supplementary data
[26] J. Bossert, N.B. Amor, A. Strich, C. Daniel, Chem. Phys. Lett.
342 (2001) 617.
Supplementary data for C22H19Cl3N3O2PRe are avail-
able from the CCDC, 12 Union Road, Cambridge CB2
1EZ, UK (fax: +44 1223 336033; e-mail: deposit@ccdc.
quest, quoting the deposition number: 243040.
[27] C.E. Powell, M.P. Cifuentes, A.M. McDonagh, S.K. Hurst, N.T.
Lucas, C.D. Delfs, R. Stranger, M.G. Humphrey, S. Houbrechts,
I. Asselberghs, A. Persoons, D.C.R. Hockless, Inorg. Chim. Acta
352 (2003) 9.
[28] J.P. Morral, C.E. Powell, R. Stranger, M.P. Cifuentes, M.G.
Humphrey, G.A. Heath, J. Organomet. Chem. 670 (2003) 248.
[29] P. Romaniello, F. Lelj, J. Mol. Struct. Theochem. 636 (2003) 23.
[30] A. Voigt, U. Abram, R. Bo¨ttcher, U. Richter, J. Reinhold, R.
Kirmse, Chem. Phys. 253 (2000) 171.
Acknowledgements
The GAUSSIAN03 calculations were carried out in the
Wrocław Centre for Networking and Supercomputing,
WCSS, Wrocław, Poland under calculational Grant
No. 51/96.
[31] M. Lipowska, L. Hansen, R. Cini, X. Xu, H. Choi, A.T. Taylor,
L.G. Marzilli, Inorg. Chim. Acta 339 (2002) 327.
[32] J. Gancheff, C. Kremer, E. Kremer, O.N. Ventura, J. Mol. Struct.
(Theochem) 580 (2002) 107.
[33] M.L. Kuznestov, E.A. Klestova-Nadeeva, A.I. DementÕev, J.
Mol. Struct. (Theochem) 671 (2004) 229.
[34] N. Psaroudakis, K. Mertis, D.G. Liakos, E.D. Simandiras, Chem.
Phys. Lett. 369 (2003) 490.
References
[35] X.-Y. Liu, S. Bouherour, H. Jacobsen, H.W. Schmalle, H. Berke,
Inorg. Chim. Acta 330 (2002) 250.
[1] G.B. Richter-Addo, P. Legzdins, Metal Nitrosyls, Oxford Uni-
versity Press, Oxford, 1992.
[2] J.A. McCleverty, Chem. Rev. 79 (1979) 53.
´
[36] E. Bencze, J. Mink, I. Papai, I.S. Butler, D. Lafleur, D.F.R.
´
Gilson, J. Organomet. Chem. 616 (2000) 1.